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Abstract—This research develops a 4-DOF robotic arm 

system that utilizes numerical codes for accurate, automated 

object handling, supporting advancements in sustainable 

industrial automation aligned with the UN Sustainable 

Development Goals (SDGs), particularly Industry, Innovation, 

and Infrastructure (SDG 9). Key contributions include the 

integration of EasyOCR for reliable code recognition and a 

control mechanism that enables precise positioning. The robotic 

system combines a webcam for visual sensing, servo motors for 

movement, and a gripper for object manipulation. EasyOCR 

effectively recognizes numerical codes on randomly positioned 

objects against a uniform background while the microcontroller 

calculates servo angles to guide the arm accurately to target 

positions. Testing results show a success rate exceeding 94% for 

detecting codes 1 to 4, with minor servo angle errors requiring 

adjustments in arm extension by 30 mm to 50 mm. Positional 

error analysis reveals an average error of less than 1.5 degrees. 

Although environmental factors like lighting can influence code 

visibility, this approach outperforms traditional methods in 

adaptability and precision. Future research will focus on 

enhancing code recognition under variable lighting and 

expanding the system's adaptability for diverse object types, 

broadening its applications in industries demanding high 

efficiency. 

Keywords—Robotic Arm; 4-DOF; Manufacturing 

Innovation; EasyOCR; Numerical Code; Precision Control. 

I. INTRODUCTION 

As modern industries increasingly adopt automation, 

robotic systems are becoming essential tools for enhancing 

efficiency, precision, and safety in various operational tasks. 

Unlike human labor, which is susceptible to fatigue and error, 

robots are specifically designed to perform repetitive and 

precise tasks without compromising accuracy, thus 

significantly improving productivity in industrial settings. 

One of the most versatile robotic systems in such applications 

is the robotic arm, which replicates human arm movements 

and is particularly useful in assembly lines, material 

handling, and even hazardous environments [1], [2]. Robotic 

arms are capable of performing movements in multiple 

directions (up/down, right/left, forward/backward), allowing 

them to transfer objects with minimal human intervention [3]. 

While the robotic arm in this study remains a prototype, its 

potential for industrial applications is substantial. 

To mimic the complexity of human arms, robotic arms are 

equipped with manipulators consisting of multiple segments 

and joints, typically categorized into the arm, wrist, and 

gripper [4]-[7]. These components enable robotic arms to 

handle delicate tasks with precision. Furthermore, the 

integration of computer vision enhances their functionality by 

allowing the perception and interpretation of visual data. 

Computer vision converts visual inputs (images or videos) 

into valuable information, allowing robots to recognize 

objects, track movements, and adapt to environmental 

changes [8]. In robotics, computer vision is widely applied in 

fields like automotive manufacturing, medical technology, 

and automated inspection [9]-[12]. By integrating computer 

vision algorithms, robotic systems can now process real-time 

data to control their movements effectively, which is critical 

for applications involving object recognition and 

manipulation [13]-[17]. 

Although significant progress has been made in robotic 

arm control, challenges remain, particularly in environments 

where objects are randomly positioned and where object 

recognition must be automated based on specific markers or 

codes. Previous research has explored various control 

strategies, such as Robotic Operating System (ROS) 

integration, depth sensors, fuzzy logic, and Proportional-

Integral-Derivative (PID) controllers, each demonstrating 

advancements in control precision [18]-[24]. However, these 

approaches are often limited to structured settings and lack 

the flexibility needed for handling objects in unpredictable 

orientations or with specific identifying codes. Moreover, 

while some studies have focused on pattern or color-based 

recognition, there is a gap in research on implementing 

numerical code-based object manipulation in robotic arms, 

especially when dealing with randomly placed items. 

This study addresses this gap by developing a 4-DOF 

robotic arm that uses numerical code recognition to identify 

and sort objects. The system integrates a webcam as a visual 

sensor and employs EasyOCR—a deep learning-based 
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Optical Character Recognition (OCR) tool—to detect and 

interpret numerical codes printed on objects. Unlike 

conventional color or shape-based recognition methods, 

numerical code-based recognition offers a straightforward 

and efficient means of classifying objects with high precision. 

However, this approach also presents unique challenges, such 

as ensuring reliable detection under various lighting 

conditions, background contrast, and object orientation. By 

overcoming these obstacles, the system demonstrates a high 

degree of flexibility and adaptability for industrial 

applications. 

The robotic arm developed in this study operates by 

recognizing numerical codes on objects placed randomly on 

a white surface within its workspace. The OCR system 

processes images from the webcam to interpret the numerical 

code, which then directs the robot to transport the object to a 

designated location. This setup allows the robot to adapt to 

varying object positions and orientations, a capability not 

commonly seen in current robotic systems. The use of 

EasyOCR enables accurate code detection even when objects 

are partially rotated or placed in less ideal conditions, 

addressing a critical gap in automated object manipulation. 

Introducing a precision control system for a 4-DOF 

robotic arm that leverages numerical code-based recognition, 

allowing for accurate object manipulation in unstructured 

environments. This feature enables the robot to manage tasks 

that require adaptable object handling. 

Pioneering the application of EasyOCR in robotic 

systems to automate object sorting based on numerical codes. 

Unlike previous research that focuses on color-based 

detection or simpler control algorithms, this study utilizes 

OCR for enhanced adaptability, paving the way for broader 

industrial applications. 

To address safety and ethical considerations, this robotic 

system is designed to perform its tasks in environments 

isolated from human operators, minimizing potential risks. 

This aspect is crucial, as robots increasingly coexist with 

human workers in various industries. Furthermore, this 

research provides a foundation for future developments in 

robotic automation, particularly in sectors where high-

precision sorting and handling are required. By emphasizing 

OCR-based manipulation, the study contributes to an 

evolving field of industrial automation, with potential 

applications in logistics, automated warehousing, and 

beyond. 

In conclusion, the system developed in this study 

demonstrates significant advancements in using computer 

vision and OCR for robotic manipulation. With enhanced 

adaptability to dynamic environments and an innovative 

approach to handling numerical codes, this 4-DOF robotic 

arm prototype has promising implications for improving both 

the efficiency and accuracy of material handling in industrial 

settings. 

II. LITERATURE REVIEW 

 Robot ARM 

A robot arm is a mechanical device designed to mimic 

tasks typically performed by the human hand. This robot is 

known as a manipulator or robot arm, consisting of links and 

joints. Each joint on the robot arm can move according to the 

commands given, but the movement of the robot arm is not 

the same as the movement of a human hand, which has the 

ability to perform complex motions[25]-[27]. However, the 

robot's joints possess a range of movement known as Degrees 

of Freedom (DOF). A robotic manipulator has more freedom 

of movement compared to a human arm. For example, the 

robot's articulated elbow can move up and down, whereas the 

human elbow can only bend in one direction when the arm is 

straight. 

Fig. 1 shows a robot arm capable of performing 

movements that allow the robot to precisely reach specific 

positions. The manipulator of the robot usually consists of the 

arm and the wrist. 

 

Fig. 1. Robot ARM 

 Degree of Freedom 

Degrees of Freedom (DOF) refers to the number of 

independent movements that a system can perform. In 

robotics or mechanics, DOF refers to the number of joints or 

axes of motion a mechanism or robot has [28], [29]. DOF is 

described as the degree of freedom a system has to move in 

three-dimensional space, where each joint or axis of motion 

on the robot adds one degree of freedom [30]-[33]. The 

number of DOF required in the design of a robot arm or other 

mechanical system depends on the application needs and the 

complexity of the tasks to be performed. The higher the DOF, 

the more complex and flexible the movements that can be 

executed to complete specific tasks. 

 Kinematics 

Kinematics is the study of the motion of bodies without 

considering the forces, torques, or moments that cause the 

motion. The kinematics discussed here focuses explicitly on 

studying and analyzing the movement of robot arms [6], [34], 

[35]. Robot kinematics consists of two types (Fig. 2). 

Forward kinematics calculates the orientation and position of 

the end-effector based on the joint angles. Inverse kinematics, 

on the other hand, is the reverse of forward kinematics; it 

provides the end-effector's position and the required angles 

that must be adjusted for each joint to reach that position. 
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Fig. 2. Diagram block kinematics 

 Forward Kinematics 

Forward kinematics is the kinematic analysis used to 

obtain the position coordinates (x, y, z) when the angles of 

each joint are known (Fig. 3). For instance, if a robot with 

multiple DOF is given, and the angles of each joint are 

known, forward kinematic analysis can be used to determine 

the robot's position coordinates. Forward kinematics is used 

to determine the position and orientation of the end-effector 

when the joint angle variables are known [36]-[42]. The given 

joint angle variables are converted into the position and 

orientation of the end-effector, which are referenced to a 

coordinate system. The purpose of the forward kinematics 

method is to obtain the x, y, and z coordinate values. 

 

Fig. 3. Forward kinematics 

 Invers Kinematic 

Inverse kinematics, also known as reverse kinematics, is 

used to find the joint angle variables of a robot in order to 

determine the position and orientation of the end-effector 

(Fig. 4) [36], [37], [41]. To achieve this, the robot's kinematic 

equations are used to determine the joint parameters that will 

provide the desired position of the end-effector. 

Kinematic equations are used to simulate the movement 

of a robot. The robot's configuration is determined based on 

parameters for each actuator according to these equations. 

The parameters are calculated using forward kinematics, and 

this calculation is reversed to determine the joint parameters 

needed to achieve the desired configuration. The inverse 

kinematics method generally finds the parameter values 

required for each actuator to reach the end goal. To determine 

these parameter values, the robot must know the size, 

number, and degrees of freedom of the actuators. 

Furthermore, the formulas collected from various calculation 

models must be embedded in the robot. This must be done 

using direct graphical analysis and different research 

methods. 

The analysis of kinematic equations can be solved in the 

most basic way, which is by using trigonometry with the help 

of graphs. Each component in the coordinates (𝑥, 𝑦, 𝑧) is 

expressed as a transformation of each component in its own 

space (𝑟, 𝜃). The radius 𝑟 in the equation is often referred to 

as the length of the arm or the first link. 

 

Fig. 4. Invers kinematics 

Inverse kinematic equations can be determined by 

applying trigonometry, observing each joint that moves in a 

single direction. Below are the x, y, and z coordinates as 

shown in Fig. 5. 

 

Fig. 5. Coordinate x, y, and z 

To find the solution for the inverse kinematics method, 

the coordinates need to be simplified by converting the 3D 

form into 2D. The first step in solving inverse kinematics 

involves viewing the robot arm from above, or along the y-

axis, thus displaying the (x, y) plane. The target coordinates 

of the end-effector along the x-axis are denoted as 𝑥, and the 

coordinates along the y-axis are denoted as 𝑦. The required 

angle for the motor to rotate, as well as the arm's extension 

length for the end-effector to reach the target position, is 

symbolized by (𝜃1) for the rotation angle (Fig. 6). 

In determining the coordinates of the end-effector, 

inverse kinematics must be adjusted to the workspace limits 

of the robot's reach. Inverse kinematics involves calculations 

opposite to forward kinematics. Forward kinematics is used 

to obtain the position coordinates (x, y, z) when the angles of 

each joint are known, whereas inverse kinematics is the 

process of finding the joint angle variables to determine the 

position and orientation of the end-effector. 

The solution for inverse kinematics can be resolved using 

inverse kinematics, which involves the Pythagorean theorem 

and the law of cosines. This inverse kinematics solution must 

be approached from two perspectives: the top view and the 

side view of the robot arm structure. The first step in solving 

inverse kinematics is viewing the robot arm from above, or 

along the y-axis, displaying the (x, y) plane. The target 

coordinates of the end-effector on the x-axis are referred to as 

x, and on the y-axis as y. The angle that the motor must rotate 

and the arm extension length needed for the end-effector to 

reach the target position are symbolized by (𝜃1) for the 

rotation angle. 
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Fig. 6. Top view 

To calculate the angle (𝜃) that the servo motor must rotate 

to reach the target position coordinates of the end-effector, 

the following formula is used: 

𝜃1 =  𝑡𝑎𝑛−1 (
𝑦

𝑥
) (1) 

Explanation, θ1 is the Angle, 𝑦 is the coordinate on the y-

axis, 𝑥 is the coordinate on the x-axis. 

The next step in solving inverse kinematics is calculating 

the rotation angles of the remaining three joints (𝜃2, 𝜃3, and 

𝜃4) by viewing the robot's structure from the side, as shown 

in Fig. 7 below. 

 

Fig. 7. Side view 

The robot arm's structure from the side view, which 

displays the y-axis and the horizontal axis, represents the 

surface plane or the (x, z) plane. The vertical target coordinate 

of the end-effector, i.e., the coordinate on the y-axis, is called 

y, and the target coordinate on the horizontal axis (coordinate 

plane (x, z)) is the length of the extension (D). Therefore, the 

inverse kinematics calculations using geometry to determine 

the rotation angles of the joints 𝜃2, 𝜃3, and 𝜃4 that the motor 

must rotate can be solved using the following formulas: 

𝑑 = 𝐷 − 𝐿4 (2) 

Explanation, 𝑑 is t    x                    θ2    θ4, 𝐷 is the 

extension length, 𝐿4 is the arm length 4. 

Fig. 7 shown earlier forms a right-angled triangle with 

sides (d, 𝑌𝑂𝑓𝑓𝑠𝑒𝑡, and R), where 𝑌 is the difference in 

distance between the y-axis coordinate of the end-effector 

(Y𝑂𝑓𝑓𝑠𝑒𝑡) and the position of the second motion axis (𝐿1). 

𝑌𝑜𝑓𝑓𝑠𝑒𝑡 =  𝑌4 − 𝐿1 (3) 

𝑌𝑜𝑓𝑓𝑠𝑒𝑡 is the difference in distance (y-axis coordinate) 

with the end-effector point. 

𝑌4 is the distance between the first motion axis and the 

position of the fourth motion axis is 18.  

𝐿1 is the arm length 1. Using the Pythagorean theorem and 

the cosine rule, 𝑅 and 𝛼 can be calculated using the following 

equations: 

𝑅 =  √(2)2 + (𝑌𝑜𝑓𝑓𝑠𝑒𝑡)22
 (4) 

𝑑

𝑅
= 𝑐𝑜𝑠 (𝑎1) (5) 

By using the inverse function to find 𝛼1, the equation 

becomes as follows: 

𝑎1  =  𝑐𝑜𝑠−1  (
𝑑

𝑅
) (6) 

Fig. 7 shown earlier forms a triangle with sides (𝐿2, 𝐿3, 

and R). Using the cosine rule, 𝛼2 can be calculated with the 

following equation: 

(𝐿3)2 = (𝐿2)2 + (𝑅)2 − 2𝑥𝐿2𝑥𝑅𝑥𝑐𝑜𝑠(𝑎2) (7) 

By using the inverse function to calculate 𝛼2, the equation 

becomes as follows: 

𝑎2 = 𝑐𝑜𝑠−1(
𝐿2

2 + 𝑅2 + 𝐿3
2

2𝑥𝐿2𝑥𝑅
) (8) 

Then, to solve for 𝜃2, it is the sum of 𝛼1 and 𝛼2, as 

follows. 

𝜃2 = 𝑎1 − 𝑎2 (9) 

To calculate 𝜃3, the cosine rule can also be used based on 

the triangular plane formed in Fig. 7, with sides (𝐿2, 𝐿3, and 

𝑅). The equation is as follows: 

𝑅2 = (𝐿2)2 + (𝐿3)2 − 2𝑥𝐿2𝑥𝐿3𝑥𝑐𝑜𝑠(𝜃3) (10) 

By using the inverse function to calculate 𝜃3, the equation 

becomes as follows: 

𝜃3 = 𝑐𝑜𝑠−1(
𝐿2

2 + 𝑅2 + 𝐿3
2

2𝑥𝐿2𝑥𝐿3

) (11) 

The last joint, 𝜃4, can be calculated based on the angle 

that must be formed by the servo motor rotation between 𝐿3 

and 𝐿4. It is important to ensure that the gripper's orientation 

is parallel to the surface (coordinate plane (𝑥, 𝑧)) for optimal 

object gripping. Using the rule that the sum of the angles in a 

triangle does not exceed 180°, the equation to calculate 𝜃4 is 

as follows: 

𝜃4 = 100° − {[100° − (𝑎2 + 𝜃3)] − 𝑎1} (12) 

In some cases, if the height of the end-effector (Y4 

position) is lower than the position of joint 2, the calculations 

for 𝜃2 and 𝜃4 require different equations or calculation 

methods. For the Y4 position lower than the position of joint 

2, the robot's configuration is shown in Fig. 8 below. 
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Fig. 8. Side view when the end-effector's y-axis position is below joint 2 

Fig. 8 shows the movement scenario when the 𝑦-axis 

position of the end-effector is below the position of joint 2, 

creating a distance difference on the 𝑦-axis between the end-

effector and joint 2. This distance difference is symbolized as 

𝑌𝑂𝑓𝑓𝑠𝑒𝑡. Therefore, the calculation for 𝜃2 is as follows: 

𝜃2 =  𝑎2 − 𝑎1 (13) 

To calculate 𝛼1, the same principles of the Pythagorean 

theorem and the cosine rule for right-angled triangles are 

used, as in equation (6) previously. The calculation of 𝛼2 

employs the same cosine principle as in equation (8) 

previously. Then, the calculation for 𝜃4 is as follows: 

𝜃4 = 100° − {[100° − (𝑎2 + 𝜃3)] − 𝑎1} (14) 

It is important to note that the zero reference point of the 

environmental coordinate system is set based on the position 

of joint 1 of the robot. Since the rotational axis of joint 1 is 

along the y-axis, joint 1 serves as the reference point for both 

the x-axis and z-axis in the environment. The zero point of 

the y-axis is the working surface, measured up to the center 

of the rotational axis of joint 2, where the rotational axis of 

joint 2 is perpendicular to joint 1. 

 Motion Path Control System 

Forward and Inverse Kinematics are solutions to the 

kinematic control of a robotic manipulator, which only focus 

on the geometry of the robot [36], [37], [41], [43], [44]. These 

solutions do not take into account other constraints imposed 

by the workspace in which the robot operates. Specifically, 

forward and inverse kinematics do not consider the 

possibility of collisions between the robotic manipulator and 

objects within the workspace. Therefore, a robot motion path 

planning system is required so that the robot can move along 

path points, including the starting point, intermediate points, 

and the target point. There are various methods for 

performing path planning, all of which aim to provide a series 

of points, called via points, along the path. The simplest 

method of path planning is to provide a sequence of end-

effector positions. In this method, inverse kinematics is 

required to convert the end-effector positions into joint 

configurations. For the robot to move precisely to each path 

point resulting from the path planning, motion planning is 

required. This motion planning is done by creating a position 

function based on time, commonly known as a trajectory. 

Since the trajectory is a function of time, the velocity and 

acceleration of the robot along the path can also be calculated. 

Trajectory planning can be carried out either in joint space or 

Cartesian space. 

 Image Processing Procedure 

An image can be defined as a function 𝑓(𝑥, 𝑦) of size M 

rows and N columns, where 𝑥 and 𝑦 are spatial coordinates, 

and the amplitude of f at the coordinate point (𝑥, 𝑦) is called 

the intensity or grayscale level of the image at that point. A 

digital image consists of a number of elements, each element 

having a specific location and value [45], [46], [47]. These 

elements are referred to as picture elements, image elements, 

pels, or pixels. Sources of noise in digital images can occur 

during image acquisition or transmission. The performance 

of image sensors or cameras is influenced by many factors, 

such as environmental conditions during image capture with 

a webcam, lighting levels, and sensor temperature, which are 

the main factors affecting the level of noise in the resulting 

image. If the values of 𝑥, 𝑦, and the amplitude 𝑓 are finite and 

discrete, the image can be considered a digital image (Fig. 9). 

 

Fig. 9. Example of digital image coordinates 

 Grayscale Image 

A grayscale image is a type of digital image where each 

pixel is represented by a single intensity value (Fig. 10). 

Grayscale images do not contain color information, only 

representing the brightness or intensity level of each pixel. 

One of the initial processes commonly performed in image 

processing is converting a color image to a grayscale image, 

as this simplifies the image model. For a digital image to be 

processed by a computer, it must have a specific format. The 

digital image format used is grayscale, called grayscale 

because it typically uses black as the minimum color (0) and 

white as the maximum color (255), with the colors in between 

being shades of gray. 

 

Fig. 10. Grayscale Image 

 Otsu Thresholding 

Otsu thresholding is a method used in image processing 

for automatic segmentation based on histogram analysis. The 

approach applied by the Otsu method involves discriminant 

analysis by determining a variable that can distinguish 

between two or more naturally formed groups [48], [49], [50], 

[51], [52], [53], [54], [55]. The discriminant analysis 

maximizes the separation of the object (foreground) and the 

Origin coordinates 

A pixel 
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background. To obtain the threshold value, a calculation must 

be performed. The first step is to create a histogram to 

determine the number of pixels at each grayscale level. The 

grayscale levels of the image are denoted by 𝑖 to 𝐿. The 

probability of each pixel at the 𝑖-th level is expressed in 

Equation (15). 

𝑃𝑖 =
𝑛𝑖

𝑁
 (15) 

Explanation, 𝑃𝑖  is the probability of the 𝑖-th pixel, 𝑛𝑖 is the 

number of pixels with grayscale level 𝑖 is 24, 𝑁 is the total 

number of pixels in the image. 

The next step is to find the values of the cumulative, 

cumulative mean, and global intensity. These values can be 

determined using the formulas for calculating the cumulative 

sum of 𝜔(𝑘) for 𝐿 = 0, 1, 2, …, 𝐿-1 in equation (16), the 

formula for calculating the cumulative mean of 𝜇(𝑘) for 𝐿 = 

0, 1, 2, …, 𝐿-1 in equation (17), and the formula for 

calculating the global intensity mean of 𝜇𝑇(𝑘) for 𝐿 = 0, 1, 2, 

…, 𝐿-1 in equation (18). 

𝜔(𝑘) = ∑ 𝑝𝑖
𝑘
𝑖=0   (16) 

𝜇(𝑘) = ∑ 𝑖. 𝑝𝑖
𝑘
𝑖=0   (17) 

𝜇𝑇(𝑘) = ∑ 𝑖. 𝑝𝑖
𝐿−1
𝑖=0   (18) 

In the equation above, the value of 𝑘 represents the 

grayscale level at which each pixel range will be calculated. 

To determine the between-class variance, the next step can be 

seen in equation (19). 

𝜎𝐵
2(𝑘) =

[𝜇𝑇𝜔(𝑘)−𝜇(𝑘)]2

𝜔(𝑘)[1−𝜔(𝑘)]
  (19) 

From the results of the between-class variance 

calculation, the maximum value is determined. The largest 

value is used as the threshold (𝑘), as shown in equation (20). 

𝜎𝐵
2(𝑘) = 𝑚𝑎𝑥1≤𝑥≤𝐿𝜎𝐵

2(𝑘)  (20) 

Explanation, 𝜔(𝑘) is the cumulative total, 𝜇(𝑘) is the 

cumulative mean, 𝜇𝑇(𝑘) global intensity mean, 𝜎𝐵
2(𝑘) is the 

threshold value. 

The purpose of the between-class variance is to find the 

threshold value from a grayscale image, where the threshold 

value will be used as a reference to convert the grayscale 

image to a binary image. Each image does not have the same 

threshold value. 

 Binary Image 

Binarization converts the grayscale image colors into 

black and white, or binary (Fig. 11). If pixels exist, the colors 

will change from values of 0 and 255 in the image to pixel 

values of 0 and 1 for each pixel [56], [57], [58], [59], [60]. As 

a result, the image becomes black and white. The formula 

used to convert a grayscale image to a black-and-white or 

binary image is represented by equation (21). 

𝑔(𝑥, 𝑦) = {
1, 𝑗𝑖𝑘𝑎 𝑓(𝑥, 𝑦) ≥ 𝑇
0, 𝑗𝑖𝑘𝑎 𝑓(𝑥, 𝑦) < 𝑇

  (21) 

Explanation, 𝑓(𝑥, 𝑦) is the grayscale image, 𝑔(𝑥, 𝑦) is the 

binary image, 𝑇 is the threshold value. 

 
 

Fig. 11. Binary image and binary image representation 

 Morphological Operations 

Morphological operations are commonly applied to 

binary (black-and-white) images to alter the structural shape 

of objects contained within the image [61], [62], [63], [64], 

[65], [66]. Morphology is an image processing technique 

based on the shape of image segments. The goal of 

morphological operations is to improve the results of 

segmentation. Examples of morphological 

operations/applications include:  

a. Closing holes in the image. 

b. Separating objects. 

c. Forming a spatial filter. 

d. Obtaining the skeleton of the object 

e. Determining the position of the object in the image 

f. Obtaining the structural shape of the object 

 Erosion 

Erosion is a morphological operation that reduces the 

pixels at the boundaries between objects in a digital image 

[67]. When erosion is performed, pixels at the boundaries of 

the object being eroded are removed. The number of pixels 

added or removed depends on the size and shape of the 

structuring element used to process the image. 

Fig. 12 Below is the result of the image after the erosion 

process, applied to the original image with the structuring 

element specified above. The green pixels represent those 

removed after the erosion process, leaving only the black 

pixels as the result. 

 

Fig. 12. Morphological erosion operation 

 Labeling Object 

Labeling serves to group specific areas (pixels) and is 

commonly used in character recognition applications and 

object number detection. Binary images are frequently used 

in image processing for further analysis. In a binary image, 

multiple objects are displayed through the values that appear. 

The objects that appear can be counted using labeling. There 

are neighborhood rules that determine whether a pixel 

belongs to a specific neighboring region (Fig. 13). 
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Fig. 13. Types of neighborhoods 

  Image Segmentation 

In image processing, sometimes we want to process only 

specific objects. Therefore, image segmentation is necessary 

to separate the foreground object from the background. 

Typically, the output of image segmentation is a binary 

image, where the desired object (foreground) is white (1), 

while the background to be removed is black (0) [68], [69], 

[70], [71], [72], [73], [74]. 

 Centroid 

The centroid is the center point or the midpoint of an 

object's area with coordinates (x, y). The centroid value for 

each object will vary. The centroid is used to determine the 

position of an object in an image. In a binary image or black-

and-white image, the centroid is also known as the center of 

gravity, meaning the center of mass based on pixel intensity 

in the image (Fig. 14) [75], [76], [77], [78]. 

 

Fig. 14. Process of finding the centroid value 

Based on the example in Fig. 14, the centroid value can 

be calculated using equations 22 and 23. Below is an example 

of how to calculate the centroid value. 

 . C          x 

𝑥𝑡 =
1

9
(2 × 1) + (2 × 1) + (2 × 1) + (3 × 1)

+ (3 × 1) + (3 × 1) + (4 × 1)
+ (4 × 1) + (4 × 1) 

(22) 

𝑥𝑡 =
1

9
(27)  

𝑥𝑡 = 3  

b. C          y 

𝑦𝑡 =
1

9
(2 × 1) + (2 × 1) + (2 × 1) + (3 × 1)

+ (3 × 1) + (3 × 1) + (4 × 1)
+ (4 × 1) + (4 × 1) 

(23) 

𝑦𝑡 =
1

9
(27)  

𝑦𝑡 = 3  

Based on the calculation results, the centroid value (x, y) 

is (x = 3, y = 3). 

 Optical Character Recognition (OCR) 

OCR stands for Optical Character Recognition. OCR is a 

technology used to recognize and extract text or characters 

from a scanned or photographed image or document, 

allowing the text to be processed and manipulated in 

computer software [79], [80], [81], [82], [83]. This OCR 

technology enables more effective and efficient document 

digitization and processing, as it allows physical documents 

to be converted into digital formats that can be processed 

more easily and quickly. OCR is commonly used in 

applications such as signature recognition, business card 

scanners, and OCR applications that can detect text in an 

image or video for automatic processing. 

 EasyOCR 

OCR, previously known as Optical Character 

Recognition, is revolutionary for today's digital world. OCR 

is essentially a complete process where images/documents in 

the digital world are processed, and the text is converted into 

editable, normal text. The purpose of OCR is to enable 

readers to convert various types of documents, such as 

scanned paper documents, PDF files, or images taken with a 

digital camera, into editable and searchable data.  

EasyOCR is essentially a Python package that uses 

PyTorch as its backend handler [84], [85]. It detects text from 

images, and in               ’           ,      u       ,     

researcher found it to be the easiest way to detect text from 

images. Additionally, with the support of a top-tier deep 

learning library (PyTorch) on the backend, it makes the 

accuracy more credible. 

EasyOCR supports over 42 languages for detection 

purposes (Fig. 15) [86], [87]. EasyOCR was created by a 

company called Jaided AI. 

 

Fig. 15. EasyOCR framework 

III. METHOD 

 Block Diagram 

The system consists of four main sections: input, display, 

control, and output, as depicted in the block diagram (see Fig. 

16). 

1) Input Section 

A Logitech C270 webcam captures images of objects 

within the workspace, which are sent to a computer for 

processing. The webcam captures both video and pixel depth 

data, essential for accurately mapping object positions. 

2) Display Section 

The computer interface, managed by the Processing IDE, 

visually displays real-time information, including object 

coordinates, recognized numerical codes, and calculated 

servo angles. 
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3) Control Section 

The Arduino Uno microcontroller receives processed data 

and sends precise commands to each servo motor based on 

the calculated angles. 

4) Output Section 

The 4-DOF robotic arm utilizes servo motors to actuate 

its joints, with the gripper serving as the end-effector to grasp 

and move objects. Once object coordinates are identified, 

inverse kinematics determines joint angles for the base, 

shoulder, and elbow, which are then executed by the Arduino 

controller to move the robotic arm to the specified position. 

 

Fig. 16. Block diagram 

 Flowchart of Object Retrieval Process 

T    p                        b        ’         ,    

shown in the object retrieval flowchart Fig. 17, demonstrates 

how the arm identifies, captures, and moves objects based on 

their numerical codes and positions. Initially, the robotic arm 

is in a standby position, awaiting input. Once an object enters 

the designated workspace, the webcam captures an image of 

the workspace, focusing specifically on objects within the 

specified area. This captured image undergoes several 

preprocessing steps to ensure clarity and facilitate further 

processing. First, the image is converted to a binary format, 

simplifying the data by reducing it to black and white pixels, 

which aids in distinguishing the object from the background. 

Following this, noise filtering is applied to enhance image 

quality by removing unnecessary visual artifacts that could 

interfere with accurate detection. 

After preprocessing, the system assigns labels to each 

detected object, allowing them to be uniquely identified in the 

subsequent segmentation phase. During segmentation, the 

 bj   ’     p      p                      ,       p        

p                          u             . W         bj   ’  

numerical code and position identified, VsCode transmits this 

information to the Arduino microcontroller, initiating the 

  b        ’             qu    . B                     

data, the microcontroller calculates the necessary angles and 

sends instructions to each servo motor, guiding the robotic 

   ’          .       y,       b        ’     pp      

                 bj   ’          ,             u   y p     up 

the object and places it in a predetermined area according to 

the identified numerical code, completing the sequence. 

 Digital Image Preprocessing Flowchart 

The image preprocessing steps, as outlined in the 

flowchart Fig. 18, are designed to enhance image quality and 

ensure optimal accuracy in object recognition. This process 

begins with grayscale conversion, where RGB images are 

transformed into grayscale, reducing data complexity and 

improving processing speed. By converting the image to 

grayscale, only the luminance values are retained, 

simplifying the information without losing essential visual 

details necessary for object detection. 

Following grayscale conversion, thresholding using 

   u’             pp    . T         b     z            qu       

automatically determines the optimal threshold to separate 

objects from the background, converting the image into clear 

black-and-white regions. This contrast-enhancing step is 

crucial, as it isolates the object by defining its boundaries 

against the background, facilitating more accurate 

recognition in the subsequent stages. 

 

Fig. 17. Cube retrieval flowchart 

C           C                          

4       b   
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Fig. 18. Pre-processing process 

The final step in the preprocessing phase is morphological 

erosion, a technique used to refine object boundaries by 

removing small noise particles. This operation reduces 

unnecessary visual details around the object, sharpening its 

edges and enhancing the accuracy of the OCR process. By 

eliminating minor artifacts and smoothing edges, 

   p                     u              bj   ’     u  u      

well-defined, improving the reliability of numerical code 

detection. 

Once these preprocessing steps are completed, the 

prepared image is ready for the number code detection phase, 

as depicted in Fig. 19. Here, the preprocessed image 

undergoes character recognition using EasyOCR, allowing 

for the precise identification of numerical codes on each 

object. This sequence of steps in image preprocessing and 

number code detection establishes a solid foundation for 

accurate and efficient object handling by the robotic arm. 

 

Fig. 19. Flowchart for number code detection 

Fig. 20 depicts the number code detection process, where 

the preprocessed image undergoes further analysis to 

recognize numerical characters using the EasyOCR method. 

T                       y C ’                        

capabilities to accurately identify and interpret the numerical 

codes on each object, essential for precise object 

classification and handling. 

 

Fig. 20. Cube position determination flowchart 

In addition to code detection, the system determines each 

 bj   ’  p        by                      ,     u               

preprocessed image data. The centroid, representing the 

center or midpoint of the object's area, is identified with 

coordinates (x, y). These coordinates are crucial for 

positioning, as they provide the precise location of the object 

within the workspace, allowing the robotic arm to accurately 

align with and manipulate the target object. 

 Hardware Circuitry 

The webcam is the device used as the input. The input 

from the webcam is the image of the object and the captured 

characters. The object is within the specified workspace (20 

cm in length, 27.5 cm in width). The resulting image is sent 

to the personal computer via a direct connection using a USB 

cable.  

The GUI (Graphical User Interface) displays the angle 

values for each servo, the x and y coordinates of the object, 

and the numerical character. The obtained x and y coordinates 

are processed using inverse kinematics calculations to 

determine the angle values for each joint's servo. Once the 

angle values for each joint's servo are calculated, the Python 

program sends these values to the Arduino Uno through serial 

communication. 

The Arduino Uno, acting as a microcontroller, moves 

each servo according to the obtained values. Afterward, the 

four-DOF robotic arm reaches the object's x and y 

coordinates, grips the object with the gripper, and moves it to 

the default location or a desired location. 
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In detail, the design of the tool used in this research is as 

shown in Fig. 21. With the design of the robot arm as shown 

in Fig. 22 and Fig. 23. 

 

Fig. 21. Tool Design 

 

Fig. 22. Link 2 dan 3 

 

Fig. 23. Link 4 

IV. RESULT AND DISCUSSION 

 Object Placement Area Testing 

The object placement area detection testing evaluates the 

accuracy of the robotic ARM in locating and manipulating 

objects based on their coordinates within the workspace (Fig. 

24). This test involves placing an object within a defined 

workspace area while a camera captures real-time video to 

identify the object's position. Once coordinates are 

determined, the robotic ARM responds by moving to the 

designated location, following specific programmed 

conditions that adjust its movement. 

The object placement area measures 450×300 pixels, with 

each centimeter corresponding to 23 pixels. Notably, the 

webcam is positioned upside down, causing the centroid 

values of each position to be inverted. This setup requires 

software adjustments to ensure accurate location tracking and 

movement coordination. 

To simplify the process of determining (X, Y) axis 

coordinates, the object placement area is divided into six 

columns, each with its own unique adjustments programmed 

in Arduino. These columns facilitate dynamic adjustments to 

the AR ’  p           b             X      Y    u  ,       

represent coordinates relative to a reference point within the 

workspace. 

 

Fig. 24. Object Placement Area 

In this system, the sX and sY values influence servo 

motor positioning by adjusting angle changes (dX) and height 

levels (dY1, dY2, and dY3) based on the detected object 

location. This configuration allows the robotic ARM to 

calibrate its mechanical response precisely in alignment with 

the object's visual position. The area division and 

corresponding adjustments ensure the ARM maintains 

accuracy and flexibility in real-time object handling. The area 

division is as follows: 

 .        Y 0-149:  

C        :    ( Y >= 0 &&  Y < 150)  

      :  

 X            45.  

 Y1 C   u      u             u  : 105 - ((( u Y * 10) / 

1.52) / 30)  

 Y2 C   u      u             u  : 180 - ((( u Y * 10) / 

1.52) / 40)  

 Y3 C   u      u             u  : 50 + ((( u Y * 10) / 

1.52) / 50) 

b.        Y 150-330      X <= 300:  

C        :         ( Y > 150 &&  Y <= 330 &&  X <= 

300)  

      :  

 X            50.   

 Y1 C   u      u             u  : 85 - ((( u Y * 10) / 

1.52) / 30)  

 Y2 C   u      u             u  : 165 - ((( u Y * 10) / 

1.52) / 40)  

 Y3 C   u      u             u  : 65 + ((( u Y * 10) / 

1.52) / 50) 

 .        Y 150-330      X > 300:  

C        :         ( Y > 150 &&  Y <= 330 &&  X > 300) 

      :  

 X            40.  

 Y1 C   u      u             u  : 85 - ((( u Y * 10) / 

1.52) / 30)  

 Y2 C   u      u             u  : 165 - ((( u Y * 10) / 

1.52) / 40)  

 Y3 C   u      u             u  : 65 + ((( u Y * 10) / 

1.52) / 50) 
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 .        Y 331-450      X <= 300:  

C        :         ( Y > 330 &&  Y <= 450 &&  X <= 

300)       :  

 X            53 

 Y1 C   u      u             u  : 55 - ((( u Y * 10) / 

1.52) / 30)  

 Y2 C   u      u             u  : 130 - ((( u Y * 10) / 

1.52) / 40)  

 Y3 C   u      u             u  : 60 + ((( u Y * 10) / 

1.52) / 50) 

 .        Y 331-450      X > 300:  

C        :         ( Y > 330 &&  Y <= 450 &&  X > 300) 

      : 

 X            43.  

 Y1 C   u      u             u  : 55 - ((( u Y * 10) / 

1.52) / 30)  

 Y2 C   u      u             u  : 130 - ((( u Y * 10) / 

1.52) / 40)  

 Y3 C   u      u             u  : 60 + ((( u Y * 10) / 

1.52) / 50) 

The calculation results for points a to e can be seen from the 

test results based on Fig. 25, Fig. 26, Fig. 27 and Fig. 28. 

 

Fig. 25. Coordinate Point Testing for Number Code 1 

 

Fig. 26. Coordinate Point Testing for Number Code 2 

 

Fig. 27. Coordinate Point Testing for Number Code 3 

 

Fig. 28. Coordinate Point Testing for Number Code 4 

 EasyOCR Data Training 

In this study, the OCR component relies on EasyOCR, 

which primarily uses pre-trained models. However, for 

specific use cases like recognizing distinct digits, it is 

recommended to use a custom digit recognition model with 

ResNet18 architecture. This section details the steps for fine-

tuning the OCR model for accurate number code detection. 

a) Preprocessing 

Preprocessing is a foundational step that enhances the 

image quality to improve text detection and recognition 

accuracy. Images are initially converted to grayscale to 

reduce data complexity and focus on luminance, which is 

crucial for accurate OCR. 

b) Mid-process with ResNet 

ResNet (Residual Network) is incorporated as a feature 

extractor in this OCR pipeline. Known for its ability to 

maintain performance in deep networks, ResNet processes 

preprocessed images, extracting features that are crucial for 

accurate digit recognition. 

c) Training loop 

The training loop involves multiple epochs, where the 

dataset is processed   p      y     p    z           ’  
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performance. Each epoch involves adjusting the model 

weights to improve accuracy in recognizing specific digits. 

d) Model Storage 

After training, the model is saved for reuse, ensuring 

consistent performance without requiring retraining. This 

saved model is subsequently used in the EasyOCR-based 

detection system. 

 Testing EasyOCR Method for Number Code Detection 

Testing the EasyOCR-based OCR system focuses on its 

ability to accurately detect and recognize numerical codes 

(specifically digits "1" through "4"). This section elaborates 

on the operational architecture and steps involved in using 

EasyOCR, along with the results obtained from number code 

detection. 

a) Installing EasyOCR 

EasyOCR and dependencies (like PyTorch) are installed 

in the development environment (e.g., VSCode) using pip. 

Once installed, the OCR system is configured to process 

images for number code detection. 

b) Pre-processing 

Pre -processing steps include: 

1. HSV Conversion:   p  y           yz                  

 p                       . 

2. Noise Reduction:            u  u                       

              y      C . 

3. Converting the Image to Grayscale: C                

             y         p           ,    u           p  

            y,                 u       x           . 

The resulting preprocessed images are displayed in Fig. 

29 to illustrate the effectiveness of each preprocessing step 

and the quality of images provided to the OCR model for 

further processing. 

 

Fig. 29. Pre-processing results 

c) Text Detection 

Text regions within the image are detected using a deep 

learning-based text detection model, such as CRAFT 

(Character Region Awareness for Text). This model 

generates bounding boxes that delineate the detected text 

areas, as shown in Fig. 30, enabling the OCR system to isolate 

areas of interest effectively. 

 

Fig. 30. Text detection 

d) Feature Extraction 

Feature extraction is conducted using Convolutional 

Neural Networks (CNNs), allowing the OCR model to 

recognize characters within the detected regions accurately. 

EasyOCR leverages these features to recognize text 

efficiently within VSCode, facilitating seamless character 

recognition without manual CNN implementation. 

e) Displaying the Reading Results 

The final OCR results, shown in Fig. 31, include 

bounding boxes around the detected text regions, with 

recognized text overlaid on the image. This visual 

representation confirms the accuracy of text detection and 

provides clear insight into the performance of EasyOCR in 

real-time number code recognition. 

 

Fig. 31. Reading results 

The number code reading test involved presenting digits 

"1" through "4" in front of the camera to verify the accuracy 

and reliability of EasyOCR in detecting these codes. The test 

outcomes, shown in Table I, confirm successful detection for 

each presented digit. 

TABLE I.  NUMBER DETECTION TESTING 

N  Nu b   C    S   u  

1 1          

2 2          

3 3          

4 4          
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 Testing the Inverse Kinematics Method for Object 

Position 

The implementation of the inverse kinematics method on 

the robot is a key step where theoretical calculations are 

translated into executable code, enabling precise robotic 

movement based on input coordinates. This process involves 

applying several calculations and adjustments to ensure that 

the robot responds correctly to various (x) and (y) coordinate 

inputs. Specific conditioning steps are included to calibrate 

the coordinates, allowing the robot to move right and left 

smoothly and accurately based on application commands. 

This approach ensures that the robot accurately reaches the 

desired positions in the workspace, improving overall 

performance in object manipulation tasks. 

 Overall System Testing 

Testing of the ARM robot's movement is conducted once 

the number codes and object coordinates have been obtained. 

The purpose of this testing is to verify whether the ARM 

robot's movement aligns with the provided input. 

a) Testing Robot Movement with Number Code '1' 

T             b                 u         u b        “1” 

with the object positioned on the workspace sheet (Fig. 32, 

Fig. 33, and Table II). T    bj   ’  p           p      

randomly, as long as it remains within the defined workspace. 

 

Fig. 32. First trial with number code '1' 

In the first test, the ARM robot was able to detect and 

move the object to the specified location. During this initial 

test, the ARM robot performed as expected. The ARM robot 

moved the object from the coordinates (154, 170) pixels, 

which was converted to centimeters resulting in (6.6, 7.3) cm. 

To determine the servo motor movement values, the 

researcher used the inverse kinematics method that has been 

implemented in the programming language with the 

following formula: 

Sumbu x = sX  

Sumbu y = sY/23  

y = 170/23  

y = 7.3  

dX = Sumbu x/6.6  

dX = 154/6.6  

dX = 23.3  

L1 = dX + 50  

L1 = 23.3 + 50 

L1 = 73.3  

L2 = 85 - ((sumY*10)/1.52)/30)  

L2 = 85 – ((23.3 x 10 / 1.52) / 30)  

L2 = 80.1 

L3 =165 - (((sumY*10)/1.52)/40)  

L3 = 165 – ((23.3 x 10 / 1.52) / 40)  

L3 = 163.8 L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((23.3 x 10 / 1.52) / 50)  

L4 = 66 

 

Fig. 33. Second trial with number code '1' 

In the second test, the ARM robot was able to detect and 

move the object to the specified location. In this test, the 

ARM robot performed as expected. The ARM robot moved 

the object from the coordinates (347, 137) pixels, which was 

converted to cm resulting in (15.1, 5.9) cm. To determine the 

servo motor movement values, the researcher used the 

inverse kinematics method that has been implemented in the 

programming language with the following formula: 

Axis x = sX  

Axis y = sY/23  

y = 137/23  

y = 5.9  

dX = Axisx/6.6  

dX = 347/6.6  

dX = 52.5  

L1 = dX + 53  

L1 = 52.5 + 50  

L1 = 102.5  

L2 = 55 - ((sumY*10)/1.52)/30)  

L2 = 55 – ((23.3 x 10 / 1.52) / 30) 

L2 = 83.4  

L3 =130 - (((sumY*10)/1.52)/40)  

L3 = 130 – ((23.3 x 10 / 1.52) / 40)  

L3 = 179  

L4 = 60 + (((sumY*10)/1.52)/50)  

L4 = 60 + ((23.3 x 10 / 1.52) / 50)  

L4 = 50.8 
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TABLE II.  DATA COLLECTION TABLE FOR NUMBER CODE 1 

T    N . 
C    

Nu b   
S   u  

         
C           ( x) 

          u pu  
(C ) 

S                    T       

   u    
X Y X Y  1  2  3  4 

1 1          154 170 6.6 7.3 73.3 83.4 163.8 66.0 Su      u  

2 1          347 137 15.1 5.9 97.6 103.7 179.0 50.8 Su      u  

3 1          468 146 20.3 6.3 115.9 103.6 179.0 50.8 Su      u  

4 1          144 346 6.2 15.1 74.8 67.5 125.0 50.0 Su      u  

5 1          575 417 25 18.1 130.1 51.0 127.0 62.4        

6 1          210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su      u  

7 1          476 107 20.6 4.6 117.1 104.0 179.2 50.6 Su      u  

8 1          84 398 3.6 17.3 65.7 51.0 127.0 62.4 Su      u  

9 1          304 335 13.2 14.5 89.1 51.8 127.6 61.9 Su      u  

10 1          490 135 21.3 5.8 119.2 103.7 179.0 50.8 Su      u  

11 1          333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su      u  

12 1          77 240 3.9 10.4 61.7 82.7 163.3 66.4 Su      u  

13 1          320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su      u  

14 1          320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su      u  

15 1          157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su      u  

16 1          210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su      u  

17 1          451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su      u  

Su            94.11% 

b) Testing Robot Movement with Number Code '2' 

The first test of robot movement using number code '2' 

involved placing the object within the workspace area (Fig. 

34, Fig. 35, Table III). The object's position was placed 

randomly as long as it remained within the defined 

workspace. 

 

Fig. 34. First trial with number code '2' 

In the first test, the ARM robot was able to detect and 

move the object to the specified location. In this test, the 

ARM robot performed as expected. The ARM robot moved 

the object from the coordinates (210, 279) pixels, which was 

converted to centimeters resulting in (9.1, 12.1) cm. To 

determine the servo motor movement values, the researcher 

used the inverse kinematics method that has been 

implemented in the programming language with the 

following formula: 

Axis x = sX  

Axis y = sY/23  

y = 279/23  

y = 12.1  

dX = Axis x/6.6  

dX = 210/6.6  

dX = 31.8  

L1 = dX + 50  

L1 = 31.8 + 50  

L1 = 81.8  

L2 = 85 - ((sumY*10)/1.52)/30)  

L2 = 85 – ((12.1 x 10 / 1.52) / 30)  

L2 = 82,3 

L3 =165 - (((sumY*10)/1.52)/40)  

L3 = 165 – ((12.1 x 10 / 1.52) / 40)  

L3 = 163  

L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((12.1 x 10 / 1.52) / 50)  

L4 = 66.5 

 

Fig. 35. Second trial with number code '2' 

In the second test, the ARM robot was able to detect and 

move the object to the specified location. In this test, the 

ARM robot performed as expected. The ARM robot moved 

the object from the coordinates (490, 135) pixels, which was 

converted to centimeters resulting in (21.3, 5.8) cm. To 

determine the servo motor movement values, the researcher 

used the inverse kinematics method that has been 
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implemented in the programming language with the 

following formula: 

Axis x = sX  

Axis y = sY / 23  

y = 135 / 23  

y = 5.8  

dX = Axis x / 6.6  

dX = 490 / 6.6  

dX = 74.2  

L1 = dX + 45  

L1 = 74.2 + 45 

L1 = 119.2  

L2 = 105 - ((sumY*10)/1.52)/30)  

L2 = 105 – ((5.8 x 10 / 1.52) / 30)  

L2 = 179 L3 =180 - (((sumY*10)/1.52)/30)  

L3 = 180 – ((5.8 x 10 / 1.52) / 30)  

L3 = 179  

L4 = 50 + (((sumY*10)/1.52)/50)  

L4 = 50 + ((5l8 x 10 / 1.52) / 50)  

L4 = 50 

c) R b t M v m  t T  t    w th C d  “3” 

T           b                 u         “3”          

object positioned within the workspace sheet (Fig. 36, Fig. 

37, and Table IV). The object's position is placed randomly, 

as long as it remains within the defined workspace. 

 

Fig. 36.                       “3” 

In the first trial, the ARM robot was able to detect and 

move the object to the specified location. In this test, the 

ARM robot is said to have performed as expected. The robot 

moved the object with coordinates (490, 135) pixels, which 

was converted to (21.3, 5.8) cm. To determine the servo 

motor movement values, the researcher used the inverse 

kinematics method, which was input into the programming 

language with the following formulas: 

Axis x = sX  

Axis y = sY/23  

y = 135/23  

y = 5.8  

dX = Axis x/6.6  

dX = 490/6.6  

dX = 3.2  

L1 = dX + 50 65  

L1 = 3.2 + 45  

L1 = 92.7  

L2 = 105 - ((sumY*10)/1.52)/30)  

L2 = 105 – ((23,3 x 10 / 1.52) / 40)  

L2 = 103.6  

L3 =180 - (((sumY*10)/1.52)/40)  

L3 = 180 – ((23.3 x 10 / 1.52) / 40) 

L3 = 179  

L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((23.3 x 10 / 1.52) / 50)  

L4 = 50.8 

 

Fig. 37. S                      “3” 

In the second trial, the ARM robot was able to detect and 

move the object to the designated location as intended. In this 

trial, the robot ARM was considered to be functioning as 

desired. The robot ARM moved an object with coordinates 

(157, 335) pixels, which was converted to (6.8, 14.6) cm. To 

determine the servo motor movement values, the researchers 

used the inverse kinematics method, which was already 

implemented in the programming language with the 

following formula: 

Axis x = sX  

Axis y = sY / 23  

y = 335 / 23  

y = 14.5  

dX = Axis x / 6.6  

dX = 157/ 6.6 dX = 23.7  

L1 = dX + 50  

L1 = 23.7 + 50  

L1 = 76.8  

L2 = 85 - ((sumY*10)/1.52)/30)  

L2 = 85 – ((14,5 x 10 / 1.52) / 30)  

L2 = 81.8 L3 =165 - (((sumY*10)/1.52)/40)  

L3 = 165 – ((14.5 x 10 / 1.52) / 40)  

L3 = 161.8  

L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((14.5 x 10 / 1.52) / 50)  

L4 = 66.9 
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TABLE III.  DATA COLLECTION FOR CODE NUMBER 2 

T    N . 
C    

Nu b   
S   u  

         
C           ( x) 

          u pu  
(C ) 

S                    
T          u    

X Y X Y  1  2  3  4 

1 2          210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su      u  

2 2          490 135 21.3 5.7 119.2 103.7 179.0 50.8 Su      u  

3 2          210 284 9.1 12.3 81.8 81.3 163.0 66.6 Su      u  

4 2          77 201 3.3 8.7 61.7 83.1 163.6 66.1 Su      u  

5 2          470 230 20.4 10 111.2 82.8 163.4 66.3 Su      u  

6 2          232 165 10 7.1 85.2 83.4 163.8 65.9 Su      u  

7 2          451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su      u  

8 2          198 264 8.6 11.4 80.0 82.5 163.1 66.5 Su      u  

9 2          372 307 16.1 13.3 96.4 82.1 162.8 66.8 Su      u  

10 2          320 162 13.9 7.0 88.5 82.5 163.8 65.9 Su      u  

11 2          529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su      u  

12 2          373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su      u  

13 2          211 301 9.2 13.1 82.0 82.1 162.8 66.7        

14 2          210 279 9.1 12.1 81.8 82.3 163.0 66.6 Su      u  

15 2          476 107 20.6 4.6 117.1 104.0 179.2 50.6 Su      u  

16 2          216 218 9.4 9.5 82.7 82.9 163.4 66.2 Su      u  

17 2          333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su      u  

18 2          151 137 6.6 6 67.9 103.7 179.0 50.8 Su      u  

Su            94.11% 

TABLE IV.  DATA COLLECTION TABLE FOR NUMBER CODE 3 

T    N  C    Nu b   S   u  
         C           ( x) 

          u pu  

(C ) 
S                    

T          u    

X Y X Y  1  2  3  4 

1 3          315 143 13.7 6.2 92.7 103.6 179.0 50.8 Su      u  

2 3          157 335 6.8 14.6 76.8 81.8 161.8 66.9 Su      u  

3 3          117 164 5.1 7.1 67.7 83.4 163.8 65.9 Su      u  

4 3          585 403 25.4 17.5 131.6 51.2 127.1 62.3        

5 3          333 191 14.5 8.3 90.5 83.2 163.6 66.1 Su      u  

6 3          77 240 3.9 10.4 61.7 82.7 163.3 66.4 Su      u  

7 3          320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su      u  

8 3          157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su      u  

9 3          216 218 9.4 9.5 82.7 82.9 163.4 66.2 Su      u  

10 3          151 137 6.6 6 67.9 103.7 179.0 50.8 Su      u  

11 3          310 209 13.5 9.1 87.0 83.0 163.5 66.2 Su      u  

12 3          198 264 8.6 11.4 80.0 82.5 163.1 66.5 Su      u  

13 3          451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su      u  

14 3          232 165 10 7.1 85.2 83.4 163.9 65.9 Su      u  

16 3          529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su      u  

17 3          373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su      u  

18 3          320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su      u  

19 3          372 307 16.1 13.3 96.4 82.1 162.8 66.8 Su      u  

Su            94.7% 

d) Testing Robot Movement with Code Number "4" 

The first test involves using code number "4" for the 

robot's movement (Fig. 38, Fig. 39, and Table V). The object 

is positioned randomly within the defined workspace 

dimensions. 

In the first trial, the ARM robot was able to detect and 

move the object to the designated location. In this test, the 

ARM robot performed as expected. The robot moved the 

object from the coordinates (480, 283) pixels, which were 

converted to (20.9, 12.3) cm. To calculate the servo motor 

movement values, the researcher used the inverse kinematics 

method, which was implemented in the programming 

language with the following formulas: 

Axis x = sX  

Axis y = sY / 23  

y = 283 / 23  

y = 12.3  

dX = Axis x / 6.6  

dX = 480/ 6.6  

dX = 72.7  

L1 = dX + 50  

L1 = 72.7 + 50  

L1 = 112.7  

L2 = 85 - ((sumY*10)/1.52)/30)  

L2 = 85 – ((12,3 x 10 / 1.52) / 30)  

L2 = 82.3 L3 =165 - (((sumY*10)/1.52)/40)  

L3 = 165 – ((12.3 x 10 / 1.52) / 40)  

L3 = 163  

L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((12,3 x 10 / 1.52) / 50)  

L4 = 66.6 
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Fig. 38. Second trial with code number “4” 

In the first trial, the ARM robot was able to detect and 

move the object to the designated location. In this test, the 

ARM robot performed as expected. The robot moved the 

object from the coordinates (480, 283) pixels, which were 

converted to (20.9, 12.3) cm. To calculate the servo motor 

movement values, the researcher used the inverse kinematics 

method, which was implemented in the programming 

language with the following formulas: 

Axis x = sX  

Axis y = sY / 23  

y = 215 / 23  

y = 9.3  

dX = Axis x/6.6  

dX = 197/ 6.6  

dX = 29.8  

L1 = dX + 50  

L1 = 29.8 + 50  

L1 = 79.8  

L2 = 85 - ((sumY*10)/1.52)/30)  

L2 = 85 – ((9.3 x 10 / 1.52) / 30)  

L2 = 83 70  

L3 =165 - (((sumY*10)/1.52)/40)  

L3 = 165 – ((9.3 x 10 / 1.52) / 40)  

L3 = 163.5  

L4 = 65 + (((sumY*10)/1.52)/50)  

L4 = 65 + ((9.3 x 10 / 1.52) / 50)  

L4 = 66.2 

 

Fig. 39. Second trial with number code “4”

TABLE V.  DATA COLLECTION TABLE FOR NUMBER CODE 4 

T    N  C    Nu b   S   u  
         C           ( x) 

          u pu  
(C ) 

S                    
T          u    

X Y X Y  1  2  3  4 

1 4          480 283 20.9 12.3 112.7 82.3 163.0 66.6 Su      u  

2 4          197 215 8.6 9.3 79.8 83.0 163.5 65.2 Su      u  

3 4          138 408 6.0 17.7 73.9 83.4 162.8 65.9 Su      u  

4 4          210 209 13.5 9.1 87.0 83.0 163.5 66.2 Su      u  

5 4          529 355 23.0 15.4 123.2 51.6 127.5 62.0 Su      u  

6 4          373 104 16.2 4.5 101.5 104.0 179.3 50.6 Su      u  

7 4          211 301 9.2 13.1 82.0 82.1 162.8 66.7        

8 4          436 134 19.0 5.8 111.1 103.7 179.0 50.8 Su      u  

9 4          372 307 16.2 13.3 96.4 82.1 162.8 66.8 Su      u  

10 4          232 165 10 7.1 85.2 83.4 163.8 65.9 Su      u  

11 4          157 282 6.8 12.3 73.8 82.3 163.0 66.6 Su      u  

12 4          77 201 3.3 8.7 61.7 83.1 163.6 66.1 Su      u  

13 4          320 108 13.9 4.7 93.5 104.0 179.2 50.6 Su      u  

14 4          347 137 15.1 5.9 97.6 103.7 179.0 50.8 Su      u  

16 4          468 146 20.3 6.3 115.9 103.6 179.0 50.8 Su      u  

17 4          117 164 5.1 7.1 67.7 83.4 163.8 65.9 Su      u  

18 4          451 282 19.6 12.2 108.3 82.3 163.0 66.6 Su      u  

Su            94.44% 
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V. CONCLUSION 

This study successfully developed a 4-DOF robotic arm 

system capable of recognizing and manipulating objects 

based on numerical codes with high precision, achieved 

through the integration of EasyOCR for code recognition and 

a control mechanism ensuring accurate robotic arm 

positioning. The testing results indicate a success rate 

exceeding 94% in detecting and positioning objects with 

numerical codes 1 through 4, with an average positioning 

error below 1.5 degrees. The system adjusts arm length by 

approximately 30 to 50 mm to optimize positioning. These 

findings suggest that combining computer vision-based OCR 

with inverse kinematics enhances accuracy in robotic tasks 

requiring precision. 

H      ,      y    ’  p                       by 

environmental factors, such as lighting conditions, which 

impact code readability. Minor discrepancies in servo angle 

positioning necessitate further calibration in kinematic 

calculations to maintain precise object positioning. These 

observations underscore the need for further refinement in 

calibration to enhance the  y    ’     p  b    y        -world 

conditions. 

Future research should focus on developing more robust 

code recognition algorithms using deep learning models 

specifically trained for various lighting conditions. 

 xp            y    ’   u          y        le a broader 

range of object shapes and sizes would also increase its 

applicability in industries requiring automated, high-

precision object handling, such as manufacturing and 

logistics. 

The contribution of this research lies in presenting a 

reliable and adaptable robotic system that effectively 

integrates OCR-based code recognition with robotic arm 

control for precise object manipulation. These findings serve 

as a foundation for further research in computer vision-based 

robotic automation, demonstrating the potential of this 

system to improve operational efficiency across various 

industrial sectors. 
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