
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
979-8-3503-0683-5/23/$31.00 ©2023 IEEE

2023 IEEE 9th Information Technology International Seminar (ITIS)

Batu Malang, Indonesia, October 18 – 20, 2023

Fast Collaboration Competencies Model for

Software Development Life Cycle (SDLC)

Muhammad Yusuf

Department of Information System

Universitas Trunojoyo Madura

Bangkalan, Indonesia

muhammadyusuf@trunojoyo.ac.id

Budi Dwi Satoto

Department of Information System

Universitas Trunojoyo Madura

Bangkalan, Indonesia

budids@trunojoyo.ac.id

M Kautsar Sophan

Department of Information System

Universitas Trunojoyo Madura

Bangkalan, Indonesia

kautsar@trunojoyo.ac.id

Devie Rosa Anamisa

Department of Information System

Universitas Trunojoyo Madura

Bangkalan, Indonesia

devros_gress@trunojoyo.ac.id

Aang Kisnu Darmawan

Department of Information System

Universitas Islam Madura

Pamekasan, Indonesia

ak.darmawan@gmail.com

Wahyudi Agustiono

Department of Information System

Universitas Trunojoyo Madura

Bangkalan, Indonesia

wahyudi.agustiono@trunojoyo.ac.id

Abstract— Some existing Software Development Life Cycle

(SDLC) models exist, such as Waterfall, Spiral, V-Model,

Iterative, Big Bang, Agile, and others. SDLC as a framework

based on the literature review has six (6) critical problems and

weaknesses: poor documentation structures, lack of flexibility,

inadequate analysis, confusion in selecting the right SDLC,

unsuitable architecture, and lack of adaptability. To overcome

the weaknesses of the SDLC, researchers have conducted

various studies but have not found satisfactory results. This

research aims to propose a novel SDLC model called the Fast

Collaboration Competencies (FCC) model to make a better

SDLC process. The novelties of this model contain three

essential things: fast, collaboration, and competencies. The

research produced a Novel FCC for the SDLC process and a list

of advantages and disadvantages of the proposed Novel FCC.

This research significantly contributes to software development

by providing theoretical understanding, practical guidance, and

enhanced team dynamics. The FCC model can reduce project

delays, improve productivity, and increase customer

satisfaction. By sharing findings, industry professionals can

prioritize collaboration and teamwork, contributing to ongoing

improvement and evolution of software development practices.

Keywords—Software Development Life Cycle (SDLC), Fast

Collaboration Competencies (FCC), Project Management Model,

Software Development

I. INTRODUCTION

 Software Development Life Cycle (SDLC) is a
systematic process of developing and maintaining software.
SDLC can be used in different stages of software
development, including traditional desktop application
development, trending development, and much more [1].
The process of SDLC follows a well-defined set of steps,
which include requirements gathering, design, development,
testing, and deployment [2]. The models used in SDLC are
designed to represent knowledge about the various phases of
the life cycle inherent in different models and the possibility
of describing the recurrence of phases [3]. Meanwhile, a
focused SDLC for specific complex design issues can be
useful in understanding diverse user needs [4]. Researchers
can also study top management involvement in the various
SDLC phases to give guidance on its importance and support
for the success of information system projects [5].

However, the literature review shows that SDLC has many
crucial problems and weaknesses that must be improved.
SDLC has been found to have poor documentation structures
[6], lack of flexibility [7], inadequate analysis [8], confusion
in selecting the right SDLC [7], [9], unsuitable architecture
[10], and lack of adaptability [11]. Researching and selecting

the SDLC model that best fits the project’s requirements is
essential. It is necessary to comprehend the benefits and
drawbacks of each SDLC model to determine the optimal
model for a given project. Several research studies have tried
to solve this, but they have not yielded satisfactory results.
Several previous studies were A Multi-Sprint Model for Fault
Detection in Agile Software Development [12], Improved
Student Collaboration and Communication Through the
Software System Development Life Cycle [13], Predicting
software problems phase by phase with fuzzy logic and
metrics [14] and The Waterfall Software Development Life
Cycle Model as a Simulation [15], Secure SDLC framework
for adding security into the SDLC process that the CIA drives
[16], Assessing and measuring security threats and
vulnerabilities in secure software development[17],
Formalization of how software development life cycle models
are ranked and how they are predicted[18] and Z-SDLC
Model: A New Model For Software Development Life Cycle
(SDLC)[19].

This research aims to propose a novel SDLC model called
the Fast Collaboration Competencies (FCC) model to make a
better SDLC process. Developing a model for fast
collaboration competencies in the software development life
cycle (SDLC) could greatly assist software development
project teams and organizations. Collaboration is essential to
the success of any SDLC, and possessing skills that facilitate
quick and effective teamwork can result in better project
outcomes.

The Fast Collaboration Competencies (FCC) model for the
Software Development Life Cycle (SDLC) research is
essential for various reasons: (1)Improved Collaboration:
Software initiatives succeed through collaboration. Fast
collaboration helps teams respond to changing requirements,
minimize development cycles, and deliver software products
faster to satisfy customer objectives. This can boost project
productivity and quality, producing better software.
(2)Teamwork and Happiness: Collaboration improves
teamwork and job happiness. Your research can help create a
collaborative workplace where team members feel
empowered and supported by stressing fast collaboration
competencies. (3)The Fast Cooperation Competencies (FCC)
paradigm for SDLC research improves cooperation, project
efficiency, team performance, and software development
company competitiveness.

This research makes several valuable contributions to the
field: (1)Theoretical Contribution: Your research can
contribute to the theoretical understanding of collaboration in
software development. (2)Practical Guidance: The FCC

20
23

 IE
EE

 9
th

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 In

te
rn

at
io

na
l S

em
in

ar
 (I

TI
S)

 |
 9

79
-8

-3
50

3-
06

83
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IT
IS

59
65

1.
20

23
.1

04
20

22
6

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

model can offer practical guidance to software development
teams and organizations. The model can reduce project delays,
enhance productivity, and increase customer satisfaction by
ensuring smooth and efficient collaboration among team
members. (3)Enhanced Team Dynamics: Collaboration is
closely tied to team dynamics and cohesion. Focusing on fast
collaboration competencies, your findings, and
recommendations can inspire industry professionals to
prioritize collaboration and teamwork in their organizations.
By sharing your research findings with the industry, you can
contribute to the ongoing improvement and evolution of
software development practices.

II. LITERATURE REVIEW

Gupta et al. (2022) have researched An in-depth look at
how software development life cycle models work [11]; the
given information needs to provide specific results of the
paper as it is a general overview of software development life
cycle models. It includes information about the different types
of SDLC models and their advantages and disadvantages.
Gupta et al. (2021) on a study on how other SDLC models
work [2]. The paper is a comparative study of different
Software Development Life Cycle (SDLC) models. It
explains the advantages and limitations of six SDLC models -
Waterfall, Spiral, V, Agile, Iterative, and Rapid Application
Development (RAD). The paper primarily aims to explain
these models and know their differences. The report needs to
provide specific results as it studies and analyzes different
SDLC models. Mistarihi et al. (2018) on Business Process Re-
Engineering Through the Application of Structural System
Analysis and Information Technology [8] present a case study
of the implementation of Structural System Analysis (SSA)
and Information Technology (IT) in business process re-
engineering at Mix Grill restaurant in Irbid, Jordan. The
proposed methodology was effective and efficient for the re-
engineered To-Be process, significantly enhancing the
business process throughput rate, latency, and customer
satisfaction. The study recommends using SSA and IT to build
data and process models, which can help understand and
predict customer needs to gain and sustain a competitive
advantage.

Agarwal et al. (2017) on Risk Analysis and Model
Selection for the SDLC [20] discuss the comparison of
different SDLC models (waterfall, V-shaped, prototype, and
RAD) used for software development. It proposes a tool to
identify the best-suited model for a given project. The device
also incorporates risk management activities within the
models, making the product more resource-efficient.
However, the paper needs to provide specific results or
findings related to the effectiveness of the proposed tool.
Karim et al. (2016) on SDLC safe software development: a
model and case study: SDLC-secure software development
[21], The paper investigates the methodologies being used in
software development in Saudi Arabia and describes a model
for integrating security into the software development life
cycle (SDLC). The aim is to identify the appropriate means of
introducing security measures earlier in the SDLC. The
research identified various essential elements, such as security
standards, policies, processes being practiced, and tools used
within SDLC projects. The non-functional security
requirements were also found for using FORTIFY and HP
ALM for source code review and web application testing. The
paper provides recommendations and verification to elicit the
appropriate activities for each SDLC phase. MacTavish et al.

(2015), on the Systematic Approach to Sustainability through
Convincing Design [4], introduce a System Development Life
Cycle (SDLC) for persuasive design for sustainability based
on cognitive dissonance and SDLC research frameworks. It
identifies sensitive issues and factors in design, aiming to
subside ethical aspects in persuasion for sustainability. The
proposed SDLC is promising for supporting organizations and
designers in addressing sustainability issues. However,
empirical verification is needed for further exciting results.

Misra et al. (2015) on Modelling an OASDLC (Open
Agile Software Development Life Cycle) [22] presents the
results of experiments conducted to test the Open Agile
Software Development Life Cycle (OASDLC) model. The
results show that the overall cost for OASDLC is the lowest
(62,500) compared to other methods, as it involves volunteer
developers who work with the Cdvp, thereby reducing the
cost. The overall cost for Agile SDLC is the highest (10,000)
compared to any other method as it involves only skilled
Cdvp. Thitisathienkul et al . (2014) on Software document
characteristics metric-based software development process
document quality evaluation [6] introduces a method for
assessing the quality of Software Development Life Cycle
(SDLC) documents based on content and structure. It uses
measurement processes and information models to define
metrics to evaluate SDLC document characteristics. The
results can indicate document quality and identify flaws,
leading to improved communication and support for software
product development. The method's results can be validated
by comparing them with experts' expectations and
incorporating stakeholder feedback for future measurement
processes.

Öztürk et al. (2013) on Fuzzy logic software development
lifecycle selection suggest using Fuzzy Logic (FL) to choose
the most suitable Software Development Life Cycle (SDLC)
for a project based on criteria like requirements, development
time, size, complexity, experience, and risks. The FL system
was developed and tested, reducing development time, cost,
overhead, risk exposure, uncertainty management, quality
improvement, client relations promotion, and better project
tracking and control. Kumar et al . (2013), A method for
making suggestions based on rules for choosing software
development life cycle models, introduces a rule-based
recommendation system for selecting the most suitable
software development life cycle (SDLC) model based on a
software product's characteristics. The authors classified
software products based on their characteristics and surveyed
literature to elicit recommendations. The system provides
valuable hints for selecting an SDLC and validates and refines
SDLC recommendation rules. The paper also presents a
taxonomy for software product classification and compares it
with existing works—Ruparelia et al. (2010) on software
development process models [23]. The given text information
does not provide any specific results of the paper as it is a
general overview of software development lifecycle models.
It provides a tour of the main SDLC models, discusses their
relative merits, and discusses the future of SDLC models.
Therefore, there are no specific results to report. Majid et al .
(2010), in A survey of practitioners' experiences with user
participation in the software development life cycle [24], A
study on user involvement in the software development life
cycle (SDLC) found that the focus is mainly on functional
requirement gathering, with practitioners not involving users
in non-functional requirements gathering. The study used the

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

Human Centered System Development Life Cycle
(HCSDLC) model and SPSS version 13.0 for data analysis.

III. METHODOLOGY

The determination of this research method was carried out
by first studying the relevant literature for framework
development steps [25],[20], [24], [22], and [2], and how to
evaluate it [17], [21], then about the history of SDLC models
and how to analyze them [23].

The research methods on the Fast Collaboration
Competencies (FCC) model for the Software Development
Life Cycle (SDLC) are described in Fig. 1:

Fig. 1. Research Steps

A. Literature Review

This stage began by conducting a thorough literature
review to comprehend the extant theories, models, and
frameworks about collaboration competencies within the
context of SDLC. This will assist you in identifying any
research gaps and determining how your model can add to the
existing corpus of knowledge.

B. Analysis of Various SDLC Models

In this stage, the various existing SDLC models are
analyzed, namely Waterfall, Spiral, V-Model, Iterative, Big
Bang, and Agile, and then comprehensively compare the
current methods.

C. Define Fast Collaboration Competencies(FCC)

This stage was defined precisely by what you mean by
"fast collaboration competencies" in the context of the SDLC.
This could include abilities, behaviors, and dispositions that
facilitate effective and efficient teamwork.

D. Identify SDLC Phases

This stage was to understand the relevant phases and
locations of the software development life cycle (SDLC).
Typical steps include requirements gathering, design,
development, testing, deployment, and maintenance.

E. Identify Collaboration Points

This stage determines the critical components of
collaboration within each SDLC phase. These are the areas
where cooperation is crucial for the successful execution of a
project.

F. Design the FCC Model

This stage was to develop a conceptual model that outlines
the critical competencies required for rapid collaboration at
each collaboration point within the SDLC based on your
literature review and understanding of fast collaboration
competencies. Consider communication, collaboration,
conflict management, decision-making, and problem-solving.

G. Validate the Model

This stage was considering conducting interviews,
surveys, or case studies with software development experts to
ensure the dependability and validity of your FCC model.
Collect their comments and observations to refine and validate
the model.

H. Evaluate the Model's Effectiveness

This stage was after establishing the FCC model and
evaluating its applicability to real-world scenarios. Contrast
the project outcomes and team performance with and without
the model's application. This evaluation will assist in
demonstrating the worth and influence of your model.

I. Documentation and Dissemination

This stage includes the FCC model, methodology, results,
and conclusions in your documentation of research findings.
Contribute to information systems and SDLC by sharing your
research via academic publications, conferences, or industry
forums.

IV. RESULT AND DISCUSSION

The following presents the analysis results obtained after
going through a series of steps described in the previous
research methodology section.

A. Fast Collaboration Competencies (FCC) Model for

SDLC

This research produces a novel model for SDLC, which is
called the FCC model, as presented in Figure 2 below :

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The proposed FCC Model

The proposed FCC model is presented in Fig 2 that
consists of 9 stages below:

1. User requirements: this stage is conducted by a system
analyst through the interview, communication, and
discussion with the user. Therefore, the system analyst
needs some competencies, such as communication,
critical thinking, design thinking, and analytical
thinking.

2. System analysts also conduct system design using
UML and design tools like Power Designer or other
frameworks and tools. This stage contains flow design,
database design, activity diagram, deployment
diagram, and others. In this stage, the system analyst
needs competencies such as database designer,
business process modeler, and UI/UX designer.

3. Programmers use PHP, Java, Python, and others to
create mock-ups or prototypes. The software is a
prototype. The development team needs internal and
user collaboration at this level. Programmers need
programming languages, and this level is redundant.
Thus, the programmer needs user-internal developer
team communication and collaboration. User
requirements will reset the process.

4. Implementation: this stage has the same explanation
and collaboration as above. However, implementation
in this stage aims to produce the complete product. The
programmer in this stage needs some competencies,
such as DevOps, managing server machines,
programming, and API or platform integration.

5. Detailing system: the programmer conducts this stage
to develop more detailed software features. The
programmer in this step needs the same competencies
and collaborations as in the fourth stage above.

6. Getting feedback from the user: the developer team
discusses with the user to get input to improve the
product in this stage. The developer team in this stage
needs the same competencies and collaborations as in
the fourth step above.

7. Testing: the software tester will test, evaluate, and
validate the product to ensure that the developed
software works correctly. Moreover, the tester needs
some competencies, such as testing skills and
operating the testing tools. Also, the testing process
requires collaboration between the internal
development team and the user.

8. Deployment is conducted by the developer team
installing the software on the user’s computer, laptop,
or server. The deployment process needs collaboration
between the internal development team and the user.

9. The developer team conducts maintenance to maintain
the product, fix errors and bugs, and ensure the
software runs well.

This novel model is based on the development of the
Madura Herb Database System, a Village Open Data
Application, a Digital Village Index (DVI) application, a
Geographic Information System (GIS) for Salt
Management, an E-Commerce application which is called
e-Juwelen.com and other projects in the last two years ago.

B. Comparison of Some previous SDLC Models and the

Novel FCC Model

Furthermore, Table 1 compares some previous SDLC
models and the novel FCC model, such as Waterfall, Spiral,
V-Model, Iterative, Big Bang, Agile, and FCC models.

TABLE I. COMPARISON OF SOME PREVIOUS SDLC MODELS AND THE NOVEL FCC MODEL

Stages in

Waterfall

Model[26],

[27], [28], [29]

Stages in

Spiral Model

[30], [31],

[32], [33]

Stages in V-

Model [34],
[35], [36]

Stages in the

Iterative

Model [37],
[38], [39], [40],

[41]

Stages in Big

Bang Model [42],
[43]

Stages in Agile

Model [44],[45],
[46],[47],[12]

Stages in the Fast Collaboration

Competencies (FCC) Model

1. Requirements
specification

2. Software

design
3.

Implementation

4. Testing
5. Maintenance

1. Planning
2. Risk

analysis

3.
Engineering

4. Evaluation

5. Repeat

1. Requirements
specification

2. Design

3. Coding
4. Testing

5. Maintenance

1. Planning
2. Design

3.

Implementation
4. Testing

5. Feedback

6. Iteration

1. Minimal formal
development

process and

planning
2. Implementing

requirements as

they come without
requiring

complete software

revamping
3. Suitable for

smaller projects

with only one or
two software

engineers required

1. Pre-planning
2. Planning and

design

3. Execution or
development

4. Review and

feedback
5. Retrospective

1. User Requirement
2. System design

3. Mock Up or Prototype

development
4. Implementation

5. Detailing system

6. Getting feedback from the user
7. Testing

8. Deployment

9. Maintenance

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

Based on the comparison above, the novel FCC model
complements the previous SDLC process model with its
advantages and disadvantages, as shown in Table II. It's
important to note that this research contributes three novelties
factors in the model: speed, collaboration, and competencies.
Therefore, the stages of the Fast Collaboration Competencies
(FCC) Model stress the value of fast collaboration skills
throughout the process. This means that the FCC Model
considers the need for effective teamwork at each stage to
ensure that software is produced quickly and well. The FCC
Model aims to improve team members' teamwork,
communication, and coordination throughout the SDLC by
adding fast collaboration competencies and skills. This can
improve project results, shorten development processes, and
make software development projects more efficient. The Fast
Collaboration Competencies (FCC) Model emphasizes the
value of fast collaboration skills throughout the process. In
this model, the stages of defining requirements, designing
software, putting it into action, testing it, and keeping it up to
date are crucial times when people must work well together.
The FCC Model understands that effective collaboration
between team members is critical to finishing projects faster,
making the whole team more efficient, and ensuring that
software products are of high quality. The FCC Model aims to
improve teamwork, communication, and planning by putting
fast collaboration skills into each stage. This will speed up the
development process and lead to better project results. The
FCC Model recognizes collaboration as a critical part of
successful software development, which differs from standard
SDLC models that may overlook or undervalue it. It
acknowledges that fast-paced and effective teamwork is
needed to keep up with the needs and requirements of software
projects, which change quickly. The FCC Model helps the
software development team communicate, make decisions,
solve problems, and deal with conflicts by emphasizing
collaboration. This collaborative method makes projects run
more smoothly and helps team members be happier and do
better overall. With its focus on fast collaboration skills, the
FCC Model aims to improve how well software development
teams work together and, in turn, how well software
development projects turn out.

TABLE II. ADVANTAGES AND DISADVANTAGES OF THE NOVEL FCC

MODEL

No Advantages Disadvantages

1 You can get more

detailed features without
waiting for the complete

product.

It is unsuitable for a small project,

such as using less than three
features.

2 A competent person

conducts each stage and
produces a good product.

We need more than two people

for each team.

3 Reduce the risk of

implementation errors

Need collaboration tools, such as

GitHub, Trello, Jira, and others

4 More efficient Need user involvement in each
process

5 Saving time and cost Development time will be longer

if the user requirements
constantly change.

6 Can give value to the

user in advance

It is not suitable for software

development with a transparent
process

7 Features are suitable for

the user’s requirements.

8 Minimizing unpacking
ready-made features

The Fast Collaboration Competencies (FCC) model

allows software developers to obtain more detailed features

without waiting for the complete product, competent

execution at each stage, reduced risk of implementation

errors, increased efficiency, time and cost savings, value

delivery to users in advance, alignment with user

requirements, and minimizing unused features. However, it is

best for larger projects, requires more team members,

depends on collaboration tools, requires user involvement,

may delay if user requirements change, and is unsuitable for

software development with a transparent and rigid process.

These pros and cons show the FCC model's pros and

negatives, stressing the need to examine the project's context

and requirements while applying it to software development.

Evaluation of the FCC model is needed based on real projects

in future research.

V. CONCLUSION

This study proposes a new SDLC model, the Fast
Collaboration Competencies (FCC) model, to improve the
SDLC process. The research produced Novel components for
the SDLC process, such as fast, collaboration, and
competencies. Moreover, the FCC model consists of stages:
User Requirement, System design, mock-up or Prototype
development, Implementation, Detailing system, Getting
feedback from the user, Testing, Deployment, and
Maintenance. This research needs further steps with model
validation, evaluating the model's effectiveness, and the final
stage with model documentation and dissemination based on
real software development projects.

ACKNOWLEDGMENT

Thank you to the Information Systems Study Program,
Faculty of Engineering, and LPPM Universitas Trunojoyo
Madura for the support so that this research can be carried out
correctly in 2022.

REFERENCES

[1] Mudita and D. Gupta, “The Aspects of Artificial Intelligence in

Software Engineering,” j comput theor nanosci, vol. 17, no. 9, pp.
4635–4642, Jul. 2020, doi: 10.1166/jctn.2020.9291.

[2] A. Gupta, “Comparative Study of Different SDLC Models,” IJRASET,

vol. 9, no. 11, pp. 73–80, Nov. 2021, doi: 10.22214/ijraset.2021.38736.

[3] T. E. Shulga and D. E. Khramov, “Life cycle ontology of software

engineering,” Vestnik of Astrakhan State Technical University. Series:

Management, computer science, and informatics, vol. 2023, no. 2, pp.
66–74, Apr. 2023, doi: 10.24143/2072-9502-2023-2-66-74.

[4] M. M. Mustaquim and T. Nyström, “A System Development Life

Cycle for Persuasive Design for Sustainability,” in Persuasive
Technology, T. MacTavish and S. Basapur, Eds., in Lecture Notes in

Computer Science, vol. 9072. Cham: Springer International
Publishing, 2015, pp. 217–228. doi: 10.1007/978-3-319-20306-5_20.

[5] A. Alzayed and A. Khalfan, “Understanding Top Management

Involvement in SDLC Phases,” JSW, pp. 87–120, May 2022, doi:
10.17706/jsw.17.3.87-120.

[6] P. Thitisathienkul and N. Prompoon, “Quality assessment method for

software development process document based on software document
characteristics metric,” in Ninth International Conference on Digital

Information Management (ICDIM 2014), Phitsanulok, Thailand:

IEEE, Sep. 2014, pp. 182–188. doi: 10.1109/ICDIM.2014.6991412.

[7] V. Öztürk, “Selection of appropriate software development life cycle

using fuzzy logic,” Journal of Intelligent & Fuzzy Systems, vol. 25, no.

3, pp. 797–810, 2013, doi: 10.3233/IFS-120686.
[8] M. Z. Mistarihi, “The Implementation of Structural System Analysis

and Information Technology to Business Process Re-Engineering,” in

Seventh International Conference on Advances in Computing,
Communication, and Information Technology - CCIT 2018, Institute

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

of Research Engineers and Doctors, Oct. 2018, pp. 55–61. doi:
10.15224/978-1-63248-162-7-26.

[9] M. A. Adeagbo, J. E. T. Akinsola, A. A. Awoseyi, and F. Kasali,

“Project Implementation Decision Using Software Development Life
Cycle Models: A Comparative Approach,” J. Comp. Sci & Applic., vol.

28, no. 1, Sep. 2021, doi: 10.4314/jcsia.v28i1.10.

[10] D. Kumar Saini, “Software Testing for Embedded Systems,” IJCA,
vol. 43, no. 17, pp. 1–6, Apr. 2012, doi: 10.5120/6192-8700.

[11] S. Gupta, J. Banga, S. Dabas, and Dr. M. K. Bhatia, “A Comprehensive

Study of Software Development Life Cycle Models,” IJRASET, vol.
10, no. 12, pp. 354–358, Dec. 2022, doi: 10.22214/ijraset.2022.47868.

[12] P. Mishra, A. K. Shrivastava, P. K. Kapur, and S. K. Khatri, “Modeling

Fault Detection Phenomenon in Multiple Sprints for Agile Software
Environment,” in Quality, IT and Business Operations, P. K. Kapur,

U. Kumar, and A. K. Verma, Eds., in Springer Proceedings in Business

and Economics. Singapore: Springer Singapore, 2018, pp. 251–263.
doi: 10.1007/978-981-10-5577-5_20.

[13] A. Y. Egwoh and O. F. Nonyelum, “A Software System Development

Life Cycle Model for Improved Students Communication and

Collaboration,” IJCSES, vol. 8, no. 4, pp. 1–10, Aug. 2017, doi:

10.5121/ijcses.2017.8401.

[14] H. B. Yadav and D. K. Yadav, “A fuzzy logic based approach for
phase-wise software defects prediction using software metrics,”

Information and Software Technology, vol. 63, pp. 44–57, Jul. 2015,

doi: 10.1016/j.infsof.2015.03.001.
[15] Y. Bassil, “A Simulation Model for the Waterfall Software

Development Life Cycle,” International Journal of Engineering, vol.
2, no. 5, 2012.

[16] S. Kang and S. Kim, “CIA-level driven secure SDLC framework for

integrating security into SDLC process,” J Ambient Intell Human
Comput, vol. 13, no. 10, pp. 4601–4624, Oct. 2022, doi:

10.1007/s12652-021-03450-z.

[17] M. Humayun, N. Jhanjhi, M. Fahhad Almufareh, and M. Ibrahim
Khalil, “Security Threat and Vulnerability Assessment and

Measurement in Secure Software Development,” Computers,

Materials & Continua, vol. 71, no. 3, pp. 5039–5059, 2022, doi:

10.32604/cmc.2022.019289.

[18] L. Almazaydeh, M. Alsafasfeh, R. Alsalameen, and S. Alsharari,

“Formalization of the prediction and ranking of software development
life cycle models,” IJECE, vol. 12, no. 1, p. 534, Feb. 2022, doi:

10.11591/ijece.v12i1.pp534-540.

[19] S. Z. Iqbal and M. Idrees, “Z-SDLC Model: A New Model For
Software Development Life Cycle (SDLC),” International Journal of

Engineering and Advanced Research Technology (IJEART), vol. 3, no.

2, 2017.
[20] P. Agarwal, A. Singhal, and A. Garg, “SDLC Model Selection Tool

and Risk Incorporation,” IJCA, vol. 172, no. 10, pp. 6–10, Aug. 2017,

doi: 10.5120/ijca2017915143.
[21] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, “The practice

of secure software development in SDLC: an investigation through

existing model and a case study: The practice of secure software
development in SDLC,” Security Comm. Networks, vol. 9, no. 18, pp.

5333–5345, Dec. 2016, doi: 10.1002/sec.1700.

[22] S. C. Misra and V. Singh, “Conceptualizing open agile software
development life cycle (OASDLC) model,” International Journal of

Quality & Reliability Management, vol. 32, no. 3, pp. 214–235, Mar.

2015, doi: 10.1108/IJQRM-08-2013-0127.
[23] N. B. Ruparelia, “Software development lifecycle models,” SIGSOFT

Softw. Eng. Notes, vol. 35, no. 3, pp. 8–13, May 2010, doi:

10.1145/1764810.1764814.
[24] R. A. Majid, N. L. M. Noor, W. A. W. Adnan, and S. Mansor, “A

survey on user involvement in Software Development Life Cycle from

practitioner’s perspectives,” in 5th International Conference on
Computer Sciences and Convergence Information Technology, Seoul:

IEEE, Nov. 2010, pp. 240–243. doi: 10.1109/ICCIT.2010.5711064.

[25] K. Kumar and S. Kumar, “A rule-based recommendation system for
selection of software development life cycle models,” SIGSOFT Softw.

Eng. Notes, vol. 38, no. 4, pp. 1–6, Jul. 2013, doi:

10.1145/2492248.2492269.
[26] A. Satriansyah, D. Ferdiansyah, and J. Rinaldo, “Application

Prototype Attendance System Garuda Indonesia’s Premium Service

Assistant Employees Use The Waterfall Model,” CNAHPC, vol. 4, no.
1, pp. 35–45, Jan. 2022, doi: 10.47709/cnahpc.v4i1.1189.

[27] R. Armansyah and D. Pratiwi, “Game of the Cursed Prince based on

Android,” IJCA, vol. 179, no. 19, pp. 31–36, Feb. 2018, doi:
10.5120/ijca2018916333.

[28] A. Pataropura, “Online Crowdfunding Platform Information System,”
algor, vol. 3, no. 2, pp. 44–51, Mar. 2022, doi:

10.31253/algor.v3i2.1035.

[29] Z. R. S. Elsi, G. Rohana, and V. Nuranjani, “NEW STUDENT
ADMISSIONS INFORMATION SYSTEM WITH CLIENT SERVER

BASED SMS GATEWAY,” jitk, vol. 6, no. 2, pp. 159–166, Feb. 2021,

doi: 10.33480/jitk.v6i2.1377.
[30] Universitas Amikom Yogyakarta et al., “The Systematic Literature

Review of the spiral development model: Topics, trends, and

application areas,” INJURATECH, vol. 2, no. 2, pp. 154–171, Dec.
2022, doi: 10.34010/injuratech.v2i2.8372.

[31] C. Song, X. Dong, and C. Wang, “Spiral Tip Recognition via

Deterministic Learning,” Int. J. Bifurcation Chaos, vol. 30, no. 06, p.
2050093, May 2020, doi: 10.1142/S0218127420500935.

[32] R. Valerdi, “Lessons From the Father of Software Engineering,”

Computer, vol. 56, no. 1, pp. 133–136, Jan. 2023, doi:
10.1109/MC.2022.3219527.

[33] B.-T. Chu, H. Yu, and A. Dance, “USIS: A Unified Framework for

Secured Information System Lifecycle:,” presented at the 9th Joint

International Conference on Information Sciences (JCIS-06), not

available, 2006. doi: 10.2991/jcis.2006.246.

[34] Yuan Shi, Gao Jin-Yue, and 吉林大学物理系，长春 130023, “THE

PHASE EFFECT OF A DRIVING FIELD ON SPONTANEOUS

EMISSION IN V-MODEL,” Acta Phys. Sin., vol. 49, no. 6, p. 1081,
2000, doi: 10.7498/aps.49.1081.

[35] S. Robinson, “Simulation model verification and validation: increasing

the users’ confidence,” in Proceedings of the 29th conference on
Winter simulation - WSC ’97, Atlanta, Georgia, United States: ACM

Press, 1997, pp. 53–59. doi: 10.1145/268437.268448.

[36] G. Mazzanti, S. E. Guthrie, A. G. Marangoni, and S. H. J. Idziak, “A
Conceptual Model for Shear-Induced Phase Behavior in Crystallizing

Cocoa Butter,” Crystal Growth & Design, vol. 7, no. 7, pp. 1230–1241,

Jul. 2007, doi: 10.1021/cg050467r.
[37] S. Wang and P. Apostolellis, “A Student Engagement Evaluation

Methodology Inspired from Usability Engineering for Extracting

Course Design Requirements,” in 2020 ASEE Virtual Annual
Conference Content Access Proceedings, Virtual On line: ASEE

Conferences, Jun. 2020, p. 34056. doi: 10.18260/1-2--34056.

[38] F. Johannknecht, M. M. Gatzen, D. Hahn, and R. Lachmayer, “Holistic
Life Cycle Costing Approach for Different Development Phases of

Drilling Tools,” in Day 1 Mon, November 14, 2016, Bangkok,

Thailand: IPTC, Nov. 2016, p. D012S062R001. doi: 10.2523/IPTC-
18714-MS.

[39] F. Tapia, A. McKay, and M. Robinson, “SIMULATION OF

FEEDBACK LOOPS IN ENGINEERING DESIGN,” Proc. Des. Soc.,
vol. 1, pp. 2661–2670, Aug. 2021, doi: 10.1017/pds.2021.527.

[40] B. Henderson-Sellers and J. M. Edwards, “The object-oriented systems
life cycle,” Commun. ACM, vol. 33, no. 9, pp. 142–159, Sep. 1990,

doi: 10.1145/83880.84529.

[41] L. Kong and T. Yuan, “Use case modeling approach for early aspect
acquisition,” SIGSOFT Softw. Eng. Notes, vol. 34, no. 4, pp. 1–6, Jul.

2009, doi: 10.1145/1543405.1543417.

[42] A. Bröckers, “Variability in Standard Software Products: Introducing

Software Product Line Engineering totheInsurance Industry,” in The

Essence of Software Engineering, V. Gruhn and R. Striemer, Eds.,

Cham: Springer International Publishing, 2018, pp. 91–105. doi:
10.1007/978-3-319-73897-0_6.

[43] S. K. Duraisamy, B. Bass, and S. Mukkavilli, “Embedding

Performance Testing in Agile Software Model,” IJSEA, vol. 12, no. 06,
pp. 1–11, Nov. 2021, doi: 10.5121/ijsea.2021.12601.

[44] G. Waja, J. Shah, and P. Nanavati, “AGILE SOFTWARE

DEVELOPMENT,” IJEAST, vol. 5, no. 12, Apr. 2021, doi:
10.33564/IJEAST.2021.v05i12.011.

[45] L. Trihardianingsih, M. Istighosah, A. Y. Alin, and M. R. Ghonim

Asgar, “Systematic Literature Review of Trend and Characteristic
Agile Model,” j. Teknik inform., vol. 16, no. 1, pp. 45–57, May 2023,

doi: 10.15408/jti.v16i1.28995.

[46] D. Lahru Riatma, M. Masbahah, A. L. Megasari, and R. A. Fatsena,
“Telemedicine Development for Health Center Services Using Agile

Methods,” CNAHPC, vol. 5, no. 1, pp. 46–54, Jan. 2023, doi:

10.47709/cnahpc.v5i1.1987.
[47] A. Khalid, S. A. Butt, T. Jamal, and S. Gochhait, “Agile Scrum Issues

at Large-Scale Distributed Projects: Scrum Project Development At

Large,” International Journal of Software Innovation, vol. 8, no. 2, pp.
85–94, Apr. 2020, doi: 10.4018/IJSI.2020040106.

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 17,2024 at 00:58:43 UTC from IEEE Xplore. Restrictions apply.

