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Abstract. Backpropagation Neural Network (BPNN) is a suitable method for predicting the future. It has 

weaknesses, namely poor convergence speed and instability, requiring parameter tuning to overcome speed 

problems, and having a high bias. This research uses the Random Search hyperparameter technique to 

optimize BPNN to automatically select the number of hidden layers, learning rate, and momentum. The 

added accuracy of momentum will speed up the training process, produce predictions with better accuracy, 

and determine the best architectural model from a series of faster training processes with low bias. This 

research will predict the local Indonesian cattle population, which is widely developed by people in the 

eastern part, especially Madura, in 4 types of cattle: sono cattle, karapan cattle, mixed cattle, and breeder 

cattle. The results of BPNN hyperparameter measurements with the best model show that hyperparameter 

optimization did not experience overfitting and experienced an increase in accuracy of 2.5% compared to 

the Neural Network model without hyperparameter optimization. Based on the test results, the BPNN 

algorithm parameters with a data ratio of 70:30, the best architecture for backpropagation momentum is 6-

6-1, with a learning rate of 0.002, momentum 0.3, which has an MSE during testing of 0.1176 on Karapan 

type Madurese cattle. Tests based on computing time measurements show that the BPNN hyperparameter 

algorithm stops at 490 iterations compared to regular BPNN. The research results show that the hidden 

layers, learning rate, and momentum if optimized simultaneously, have a significant influence in preventing 

overfitting, increasing accuracy, and having better execution times than without optimization.  

Keywords: Hyperparameters, BPNN, Random Search, Prediction, Population Number, Madurese Cattle .

1 Introduction 

Madurese cattle are one of Indonesia's local cattle 

breeds. This cow has several characteristics, such as a 

light brown to dark brown body color, black hooves, 

snout, fine hair around the mouth, and relatively long 

legs. Apart from that, it is more resistant to the hot 

climate in the Madura area, is susceptible to parasite 

attacks, and has good meat quality [1]. As local 

Indonesian cattle, Madurese cattle are one of Indonesia's 

genetic resources [2]. The Madurese people select 

Madurese cattle into four types based on their culture: 

karapan cattle, local cattle, sonok cattle, and broiler 

cattle. Karapan cattle are bulls that can run fast, are 

agile, have hard-working skeletal muscles, and are 

emotional. Sonok cattle are female cattle that are docile, 

obedient, and beautiful, while cattle and beef cattle are 

slaughtered for their meat and sold to consumers. 

Madura cattle have several advantages, namely high 

adaptability to heat and disease resistance, utilizing low-

quality feed, having better reproductive performance 
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compared to cross-breed cattle, and consumers much 

prefer their meat [3]. So, the government's role is 

significant for the regions to continue to implement and 

improve outreach programs coaching for farmers 

regarding issues of feed technology for ruminant 

livestock and beef cattle trade systems to accelerate 

economic development, especially in Madurese cattle 

farming. The development of the cattle population is 

used as a supporting role in improving the quality of 

human resources as a provider of nutritious food sources 

to create a healthy and productive society, as envisioned 

by the vision and mission of livestock development [4]. 

Machine learning methods are the most common 

methods for predicting things. The machine learning 

method uses forecasting data samples and looks at the 

data movement patterns of the development of the time 

series data using an algorithm that can learn ways. 

Machine learning has various types of methods, for 

example, intelligent systems and artificial neural 

networks (ANN) [5]. Backpropagation modeling falls 

into the Multilayer perceptron category. The 
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development of the backpropagation algorithm is by 

adding momentum. Momentum in a neural network is a 

weight change based on the gradient direction of the last 

and previous patterns. Adding momentum parameters to 

the three artificial neural networks aims to speed up the 

learning process towards convergence [6]. Experimental 

results have also shown that this method can make the 

network converge quickly and stably. This situation is 

caused because momentum allows the network to adjust 

weights drastically if the results are changed in the same 

direction in several patterns, so training becomes faster 

[7].  

Population forecasting using artificial neural 

network (ANN) models compared to traditional cohort 

component methods (CCM) for regions in Alabama, 

USA., which has diverse population and socio-

economic characteristics. ANN has produced errors 

with the right level of precision for regional mapping 

recommendations [8]. This research is about forecasting 

population growth using a comparison of artificial 

neural networks and regression techniques, this shows 

that artificial neural networks are a good tool for 

predicting growth models [9]. 

Neural Network research has also been carried out 

by [10], where this research carried out parameter 

optimization in Neural Networks using Genetic 

Algorithms. This research shows that the combination 

of Neural Network-Genetic Algorithms is better than 

just using Neural Networks alone. The hyperparameter 

configuration that produces the best performance is 

known as hyperparameter optimization. Tuning 

hyperparameters can affect the classification algorithm's 

performance, making this step important [11]. Over the 

last few years, various algorithms have been developed 

to optimize hyperparameter values, including Random 

Search, Grid Search, and model-based approaches using 

Random Forest, and sequential model-based 

optimization [12]. Sequential model-based optimization 

is the best strategy for optimizing hyperparameters 

because it involves a probabilistic model of the data to 

determine the most promising points to evaluate. One of 

the sequential model-based optimization algorithms is 

Bayesian Optimization [13]. Research related to 

hyperparameter optimization using Bayesian 

Optimization was carried out on the Gradient Boosted 

Trees algorithm by [14]. This research showed that 

hyperparameter optimization using Random Search for 

machine learning models experienced an increase in 

accuracy compared to not using hyperparameter 

optimization. According to [15-16], some factors 

influence the performance of the Backpropagation 

algorithm, namely hidden layers, learning rate, and 

momentum, where these factors are hyperparameters in 

the neural network. Because these hyperparameters are 

an essential factor in backpropagation algorithm 

training, in building a classification model for Neural 

Networks in this research, these hyperparameters were 

optimized [17-18].  

Hyperparameters with tuning techniques using the 

random search method have the advantage of this 

method being a straightforward approach [16]. 

However, this can be a drawback because experimenting 

with all combinations will take time when handling 

large-dimensional data. It would be very suitable to use 

this algorithm for data that develops population numbers 

over several years and does not have large dimensions. 

It is hoped that applying this method can reduce the 

model's error value on manageable data [19-20]. 

This research predicts the population of Madurese 

cattle using BPNN with the addition of momentum and 

hyperparameter tuning. To determine the level of 

accuracy of the artificial neural network system that has 

been created in predicting the number of developments 

of Madurese cattle in a specific year. In the first scenario 

of this research, different error targets will produce other 

numbers of iterations. The smaller the target error, the 

greater the number of iterations. Second, the smaller the 

target error, the accuracy value tends to be better 

(larger). Third, the number of iterations in the training 

process with added momentum is more diminutive than 

without. Based on previous research, the research has 

predicted the development of the Madurese cattle 

population using the backpropagation method with the 

addition of momentum. It is hoped that the prediction 

results will prepare for food security and prevent the 

extinction of Madurese cattle. 

2 Methods 

2.1 Algoritma momentum backpropagation 

A neural Network (NN) is a network of a group of small 

processing units modeled based on human neural 

networks. NN is an adaptive system that can change its 

structure to solve problems based on external and 

internal information flowing through the web. In simple 

terms, NN is a non-linear statistical data modeling tool. 

NN can be used to model complex relationships between 

input and output to find patterns in data [11][21]. BPNN 

is a method developed by adding hidden for the 

backward process in NN. The Momentum 

Backpropagation algorithm has steps similar to the 

conventional one, but the difference lies in the reversal 

stage (backward propagation) [22-24]. The Momentum 

Backpropagation algorithm is an extension of the 

traditional Backpropagation algorithm, where in the 

learning process, it utilizes the concept of momentum, 

with a momentum constant value in the range from 0 to 

1, to reduce conventional BPNN iterations [8]. BPNN 

steps are divided into two stages, namely, feedforward 

and backward propagation [25]. 

 The feedforward step used for the initial direction 

produces the following initial output: 

1. Start by setting an initial weight from 0 to 1. 

2. Determine the maximum values for Epoch, Learning 

rate (α), Momentum, and Target Error. 

3. Next, repeat steps 4 to 8 during the (Epoch < 

maximum epoch) or (MSE > Target Error) 

condition. 

4. Execute steps 6 through 10 during the training 

process. 

5. For the testing process, perform steps 6 to 7. 

 Forward Propagation (feedforward) 
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6. Addition of weights in the hidden layer.  

 

𝒛−𝒊𝒏(𝒋) = 𝒗𝟎𝒋 + ∑ 𝒙𝒊

𝒏

𝒊=𝟏
. 𝒗𝒊𝒋 

 
(1) 

 

With: 

𝒛−𝒊𝒏(𝒋) = Total input signal at unit layer j 

𝒗𝟎𝒋 = Input bias weights of unit 0 and unit layer j 

𝒙𝒊  = Input value in unit i 

𝒗𝒊𝒋 = The weight between input unit i and layer unit 

j 

 

7. Perform activation operations with weighted 

addition with the sigmoid activation function. 

 

𝒛𝒋 =
𝟏

𝟏 + 𝒆−𝒛_𝒊𝒏(𝒋)
 

 
(2) 

 

With:   

𝒛𝒋 = Output at unit layer j 

𝒛𝒊𝒏(𝒋) = Total input signal at unit layer j 

 

8. Calculates the output layer value 

 

𝒚_𝒊𝒏𝒌(𝒌) = 𝒘𝟎𝒌 + ∑ 𝒛𝒋

𝒏

𝒋=𝟏

. 𝒘𝒋𝒌 
 

(3) 

 

With:   

𝑦_𝑖𝑛𝑘(𝑘)= Total input signal at the output of k units 

𝑤0𝑘 = Input bias weights unit 0 and unit layer k 

𝑧𝑗 = Input value at unit layer j 

𝑤𝑗𝑘  = The weight between unit j's layer and unit k 

as output 

 

9. Calculating the output signal with the activation 

function. 

 

𝒚𝒌 =
𝟏

𝟏 + 𝒆−𝒚_𝒊𝒏(𝒌)
 

(4) 

 

With:   

𝑦𝑘= Output at unit layer k 

𝑦_𝑖𝑛(𝑘)= Total input signal at the output of k units 
 

Backward propagation 

1. Calculates the error value based on the error value 

and the target value. 

 

𝜹𝒌 = (𝒕𝒌 − 𝒚𝒌) (5) 

 

With:  

𝛿𝑘 = error factor in the output of unit k 

𝑦𝑘  = Output at unit layer k 

𝑡𝑘 = Target 

 

2. Calculate the weight correction value 𝑤𝑗𝑘: 

 

∆𝒘𝒋𝒌(𝒕) =  𝜶𝜹𝒌𝒛𝒋 + ∆𝒘𝒋𝒌(𝒕 − 𝟏)𝝁 (6) 

 

 With: 

∆𝑤𝑗𝑘(𝑡)= Correct the weight of unit j and output k 

in iteration t 

𝛼 = Learning rate 

𝛿𝑘= error factor in the output of unit k 

𝑧𝑗 = Output at unit layer j 

∆𝑤𝑗𝑘(𝑡 − 1)= Correction of weights in the previous 

iteration 

𝜇 = Momentum 

 

3. Calculate the bias correction value 𝑤0𝑘: 

 

∆𝒘𝟎𝒌(𝒕) =  𝜶𝜹𝒌 + ∆𝒘𝟎𝒌(𝒕 − 𝟏)𝝁 (7) 

 

With:  

∆𝑤0𝑘(𝑡) = Correction of unit bias weight 0 and 

output k at iteration t 

𝛼 = Learning rate 

𝛿𝑘= error factor in the output of unit k 

𝑧𝑗= Output at unit layer j 

∆𝑤0𝑘(𝑡 − 1)= Bias correction in the previous 

iteration 

𝜇 = Momentum 

 

4. Addition of unit deltas for each hidden layer neuron 

 

𝜹𝒊𝒏 𝒋 =  ∑ 𝜹𝒌

𝒎

𝒌=𝟏
𝒘𝒋𝒌 

(8) 

  

With:  

𝛿𝑖𝑛 𝑗= The total sum of weighted unit delta 

𝛿𝑘 = Error factor in the output of unit k 

 𝑤𝑗𝑘  = The weight between unit j's layer and unit k's 

output 

 

5. Calculating the error value: 

 

𝜹𝒋 = 𝜹𝒊𝒏 𝒋(𝒛𝒋)(𝟏 − 𝒛𝒋) (9) 

 

With: 

𝛿𝑗 = Error value in unit layer j 

𝛿𝑖𝑛 𝑗 = Error factor in the output of unit k 

𝑧𝑗 = Output at unit layer j 

 

6. Calculate the weight correction value 𝑣𝑖𝑗: 

 

∆𝒗𝒊𝒋(𝒕) =  𝜶𝜹𝒋𝒙𝒊 + ∆𝒗𝒊𝒋(𝒕 − 𝟏)𝝁 (10) 

 

With:  

∆𝑣𝑖𝑗(𝑡) = Correct the weight of unit i and output j in 

iteration t 

𝛼 = Learning rate 

𝛿𝑗 = Error value in unit layer j 

𝑥𝑖 = Input value in unit i 

∆𝑣𝑖𝑗(𝑡 − 1) = Correction of weights in the previous 

iteration 

𝜇 = Momentum 
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7. Calculate the bias weight correction value 𝑣0𝑗: 

 

∆𝒗𝟎𝒋(𝒕) =  𝜶𝜹𝒋 + ∆𝒗𝟎𝒋(𝒕 − 𝟏)𝝁 (11) 

 

With:  

∆𝑣𝑜𝑗(𝑡) = Correction of unit bias weight 0 and 

output j at iteration t 

𝛼 = Learning rate 

𝛿𝑗 = Error value in unit layer j 

∆𝑣0𝑗(𝑡 − 1) = Correction of bias weights in 

previous iterations 

𝜇 = Momentum 

 

8. Improvement of weight values and bias values in 

the output layer. 

 

𝒘𝒋𝒌(𝒏𝒆𝒘) = 𝒘𝒋𝒌(𝒐𝒍𝒅) + ∆𝒘𝒋𝒌 (12) 

𝒘𝟎𝒌(𝒏𝒆𝒘) = 𝒘𝟎𝒌(𝒐𝒍𝒅) + ∆𝒘𝟎𝒌 (13) 

 

With:  

𝑤𝑗𝑘(𝑛𝑒𝑤) = Weight between unit j layer and unit k 

output (new) 

𝑤𝑗𝑘(𝑜𝑙𝑑)= Weight between unit j layer and unit k 

output (old) 

∆𝑤𝑗𝑘= Correct the weight of unit j and output k in 

iteration t 

𝑤0𝑘(𝑛𝑒𝑤) = Input bias weights unit 0 and unit layer 

k (new) 

𝑤0𝑘(𝑜𝑙𝑑) = Unit input bias weight 0 and unit layer 

k (old) 

∆𝑤0𝑘  = Correction of unit bias weight 0 and output 

k at iteration t 

 

9. Improved weight values and bias values in the 

hidden layer. 

 

𝒗𝒊𝒋(𝒏𝒆𝒘) = 𝒗𝒊𝒋(𝒐𝒍𝒅) + ∆𝒗𝒊𝒋 (14) 

𝒗𝟎𝒋(𝒏𝒆𝒘) = 𝒗𝟎𝒋(𝒐𝒍𝒅) + ∆𝒗𝟎𝒋 (15) 

 

With:  

𝑣𝑖𝑗(𝑛𝑒𝑤) = Weight between input unit i and layer 

unit j (new) 

𝑣𝑖𝑗(𝑜𝑙𝑑)= Weight between input unit i and layer 

unit j (old) 

∆𝑣𝑖𝑗= Correct the weight of unit i and output j in 

iteration t 

𝑣0𝑗(𝑛𝑒𝑤) = Unit input bias weight 0 and output j 

(new) 

𝑣0𝑗(𝑜𝑙𝑑) = Unit bias weight 0 and output j (old) 

∆𝑣0𝑗  = Correction of unit bias weight 0 and output 

j 

2.2 Random Search  

Random Search (RS) is very suitable in high dimensions 

because the desired function has a low practical 

dimension and is more sensitive to changes in some 

dimensions than others [26]. In particular, if a function 

f of two variables can be approximated by another 

function of one variable (f(x1, x2) ≈g(x1)), it can be said 

that f has a low practical dimension [27]. Figure 1 

illustrates how grid points and uniform collections of 

random points differ in dealing with standard adequate 

dimensions. 

 

Figure 1. Illustration random search of n parametaers for 

optimizing [28].  

Fig. 1. Show for using random search of n 

experiments to optimize the function f(x, y) = g(x) + 

h(y) ≈ g(x) with low adequate dimensions [29]. Above 

each grid, g(x) is shown in green, and on the left of each 

box, h(y) as the objective function and n as trials test 

g(x) in different places. With random search, 

experiments continuously explore different values grid 

until the appropriate parameter values are obtained [30-

31]. The parameters used for tuning parameters in 

BPNN are shown in Table 1. 

Table 1. The random search algorithm. 

Parameter Algorithm BPNN 

Number of hidden layers 3,6,8,10,12,24 

Number of Nodes 3,6,8,10,12 

Learning Rate 0.001-0.1 

Momentum 0.001-0.1 

2.3 Data Preprocessing  

Data preprocessing is carried out by imputation and 

normalization to produce data ready as classification 

input. This process is carried out to eliminate missing 

values with a value obtained from the dataset. Data 

Interpolation is an action that occurs in the pre-

processing stage. This stage fills in empty data by using 

the average value of the data before and after the open 

data [8].  

 

𝒙𝒏 =
𝒙𝒏−𝟏 + 𝒙𝒏+𝟏

𝟐
 (16) 

 

 So, normalization is done for transformation 

process stabilizes the data by changing the data into a 

scale form with a value range from 0 to 1, often called 

scalar min-max. In the normalization flow, it is carried 

out after imputation of data to overcome missing values, 

so that complete data is obtained [10]. 

 

𝒙′ =  
𝒙 −  𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏

 (17) 

 

The normalization process uses the actual data minus the 

most minor data divided by the highest data minus the 
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most minor data to produce data ranging from 0 – 1 

[9][10]. 

3 Result and Discussion 

3.1 Hyperparameter and architecture for BPNN 
performance  

In this section, we apply GS hyperparameters to 

investigate the performance of BPNN by measuring the 

performance of MSE to assess the effectiveness of all 

models for forecasting local cattle populations spread 

across Indonesia's eastern part of the island of Madura. 

Hyper-parameters with GS by selecting the best 

parameter, according to Fig. 2. to determine how 

significant, the variation in prediction results.  

 

Start

Parameter 

Learning Rate, 

Momentum, hidden 

layer, node

Determine upper 

and lower limits

Combination of 

parameter and 

architecture values

For 

Hyperparameter 

End

Calculated MSEMSE<=0.01

The Best 

Model 

BPNN 

Random selection of 

parameters within 

certain range limits

Finish

No Yes

No

Yes

 

Fig. 2. Proposed method for RS hyperparameters in BPNN 

Table 2. The effect of learning rate and momentum on MSE 

in the 4-7-1 architecture. 

Learni

ng rate 

Moment

um 

MSE 

Sono 

cattl

e 

Kerap

an 

cattle 

Breed

er 

cattle 

Beef 

cattl

e 

0.2 0.6 
0.18

16 
0.1754 0.1913 

0.21

10 

0.02 0.6 
0.19

09 
0.1766 0.1951 

0.18

39 

0.002 0.6 
0.12

15 
0.1285 0.1491 

0.15

27 

0.2 0.3 
0.17

27 
0.1763 0.1843 

0.19

23 

0.02 0.3 
0.17

61 
0.1711 0.1842 

0.18

36 

0.002 0.3 
0.13

35 
0.1392 0.1253 

0.14

03 

0.2 0.9 
0.17

88 
0.1784 0.1893 

0.19

12 

0.02 0.9 
0.21

23 
0.1777 0.2268 

0.18

67 

0.002 0.9 
0.16

53 
0.1707 0.1902 

0.18

07 

  

RS approach to find the best hyperparameter values 

with respect to a given value. The Backpropagation 

Momentum process is carried out at the training stage 

with a data division of 70%:30% of 1,000 data. The 

existing data was checked for missing values, and the 

imputation process was carried out. After obtaining 

complete data, proceed with min–max normalization so 

that the data is in the range of 0 to 1. The training stages 

use the Backpropagation momentum algorithm with the 

first stage, namely initializing the weight, max epoch, 

learning rate, and target error, carried out randomly. 

When the epochs are less than the maximum epoch or 

the MSE is greater than the target error, it will go to the 

next stage, but if not, it will immediately produce model 

output. When the number of iterations is less than the 

number of datasets, it will proceed to the next stage, 

namely FeedForward, from the input layer to the hidden 

layer to the output layer. If the max epoch is 1000, while 

epoch < max epoch or MSE > target error, at the 

FeedForward stage from input to the hidden layer to 

output, adding up the weight values in the hidden layer. 

For the sigmoid activation function, the results will be 

obtained from the output signal from the hidden neuron 

unit. At each layer, the output will add up the signals 

from the layer in the hidden unit with weights and 

biases. The sigmoid activation function is performed to 

calculate the output signal from the unit at the output. 

Next, calculate the error value. 

Table 3. The Effect of learning rate and momentum on MSE 

in the 6-6-1 architecture. 

Learni

ng rate 

Moment

um 

MSE 

Sono 

cattl

e 

Kerap

an 

cattle 

Breed

er 

cattle 

Beef 

cattl

e 

0.2 0.6 
0.17

81 
0.1792 0.1877 

0.17

91 

0.02 0.6 
0.17

81 
0.1719 0.1975 

0.18

55 

0.002 0.6 
0.11

76 
0.1454 0.1511 

0.15

73 

0.2 0.3 
0.17

32 
0.1817 0.1781 

0.19

45 

0.02 0.3 
0.16

29 
0.1726 0.1719 

0.18

51 

0.002 0.3 
0.12

98 
0.1413 0.1212 

0.14

47 

0.2 0.9 
0.15

86 
0.1804 0.1669 

0.19

56 

0.02 0.9 
0.20

85 
0.1779 0.2190 

0.19

22 

0.002 0.9 
0.17

14 
0.1620 0.1741 

0.17

89 

  

The first experiment was carried out on the 4-7-1 

architecture with different combinations of learning rate 

(0.2, 0.02, 0.002) and momentum (0.6, 0.3, 0.9). In the 

experiment conducted on Sono cattle data, the best 

performance was in the model with learning rate = 0.002 

and momentum = 0.6 and the model with learning rate 

= 0.002 with momentum = 0.3. Both models have the 

same performance in MSE = 0.09039. In kerapan cattle, 

the best performance lies in the model with a learning 

rate = 0.002 and momentum = 0.3. The model has a 

performance of MSE = 0.09104. The best broiler 

performance lies in the model with a learning rate = 

0.002 with a momentum of 0.3. The model has a 

performance of MSE = 0.09421. In beef cattle, the best 
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performance lies in the model with learning rate = 0.002 

and momentum = 0.3. The model has a performance of 

MSE = 0.08875. From the trials carried out on four data, 

the best model for testing on the 4-7-1 architecture is the 

model with a learning rate = 0.002 and momentum = 0.3. 

Table 4. The Effect of learning rate and momentum on MSE 

in the 8-13-1 architecture. 

Learni

ng rate 

Moment

um 

MSE 

Sono 

cattl

e 

Kerap

an 

cattle 

Breed

er 

cattle 

Beef 

cattl

e 

0.2 0.6 
0.18

84 
0.1721 0.1963 

0.23

65 

0.02 0.6 
0.18

60 
0.1700 0.1952 

0.18

53 

0.002 0.6 
0.12

88 
0.1383 0.1337 

0.15

61 

0.2 0.3 
0.17

78 
0.1730 0.1897 

0.19

95 

0.02 0.3 
0.17

80 
0.1617 0.1844 

0.17

38 

0.002 0.3 
0.11

83 
0.1261 0.1363 

0.14

72 

0.2 0.9 
0.19

91 
0.1694 0.2069 

0.28

98 

0.02 0.9 
0.19

98 
0.1677 0.2073 

0.18

80 

0.002 0.9 
0.18

24 
0.1749 0.2016 

0.17

81 

  

The second experiment was carried out on the 6-6-1 

architecture with different combinations of learning rate 

(0.2, 0.02, 0.002) and momentum (0.6, 0.3, 0.9). The 

model has a performance of MSE = 0.1176 far sono 

cattle, the best performance lies in the model with 

learning rate = 0.002 and momentum = 0.6. The higher 

the momentum, the lower the MSE results. Momentum 

will make the backward weighting iterations increase 

but in general it can increase the performance of the 

algorithm. 

The architecture BPNN on the 8-13-1 with different 

combinations of learning rate (0.2, 0.02, 0.002) and 

momentum (0.6, 0.3, 0.9). In experiments carried out, 

the best performance lies in the model with learning rate 

= 0.002 and momentum = 0.6. The model has a 

performance MSE = 0.1288 for sono cattle. 

3.2 Analysis 

This research has carried out non-momentum BPNN 

training and additional Momentum BPNN using three 

architectures, four learning rates, and three momentums 

on data on different types of livestock. It aims to analyze 

and observe performance architectures that consistently 

produce better-performing models. Apart from that, this 

research varies the learning rate, non-momentum, and 

momentum of each architecture to keep the effect of 

execution time on the best model. At this training stage, 

the author carried out 1,000 epochs on each of the best 

architectural models to determine BPNN performance. 

Hyperparameters with Random search are used to 

choose the most suitable architecture and calculate the 

execution time. 

 

 

Fig. 3. Best execution time of BPNN in momentum with 

architecture 4-7-1. 

 

 

Fig. 4. Best execution time of BPNN in momentum with 

architecture (6-6-1). 

 

Fig. 5. Longest execution time of BPNN with architecture 

BPNN in momentum (8-13-1) 

Backpropagation in momentum is tied to the 

previous iteration to calculate weight changes involving 

velocity. The testing with execution time on 6-6-1 

architecture with momentum = 0.002 for 600 seconds. 

What affects this is that the model needs help to find 

patterns from various datasets, so other architectures 

also take a long time. The more hidden layers, the longer 

the execution time, and the backward phase does this in 

that it updates the weights without tying up the 

constructs from the previous iteration. The MSE 

obtained is slightly more significant than the 

Backpropagation momentum. The drilled model has 

difficulty reaching the minimum value, which causes the 

acceleration of convergence to be slow. When 

comparing training times Backpropagation momentum 

is longest when execution occurs on the 8-13-1 
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architecture, when learning rate = 0.2. because more 

complex architectures require more iterations. 

The comparison of non-momentum BPNN training 

time for the best 4-7-1 architecture, with the effect of 

changing learning rate on training runtime. When the 

learning rate = 0.2, it has the fastest time, namely 469 s 

for Beef Cattle, whereas if the learning rate = 0.002, it 

has the longest time, namely 900 s for Breeder Cattle. 

The average time for all executions is 716s, meaning 

that BPNN has an uncertain time to get the optimum 

value, so its convergence is slower. The time will 

increase slightly faster. For example, the learning rate is 

reduced to 0.002, so the computational model is faster, 

and the computation takes longer. 

Table 5. Execution time is based on learning rate BPNN in 

momentum. 

Data 

Execution time is based on 

Learning Rate (s) 

0.002 0.02 0.2 

Sono 

cattle 
560 845 692 

Kerapan 

cattle 
634 617 507 

Breeder 

cattle 
900 625 730 

Beef 

cattle 
880 752 680 

 

Furthermore, testing based on execution time in 

Backpropagation adds momentum. The higher the 

momentum value produces longer iterations because of 

the role of momentum in calculating weight updates. 

Apart from that, saving the previous correction weights 

in the weight update settings is one of the causes of the 

extended computing time in each iteration. Selection of 

the best time-based architecture, namely 6-6-1, produces 

good time-based testing with added momentum, 

according to Table 5. 

Adding momentum is part of deep learning in BPNN 

to produce low bias. The formation of the best model in 

this research uses several variations on hidden neurons, 

activation functions, and automatic selection of 

parameters with random search. Random search chooses 

gradient descent with the best momentum and adaptive 

learning rate d at 0.2 for BPNN l, and the activation 

function used is sigmoid. 

4 Conclusion 

Hyperparameter Backpropagation Neural Network 

(BPNN) using random search to optimize the model 

architecture, learning rate, and momentum, with testing 

conducted epoch of 1,000. Tuning parameters based on 

learning rate and momentum on the performance of 

BPNN in momentum is in the range of learning rate 0.2, 

0.02, 0.002 has produced the best learning performance 

in this model is 0.002. The best momentum parameter 

tuning with values of 0.3, 0.6, and 0.9 makes the best 

MSE value at the lowest momentum of 0.3. 

The effect of the best architecture model on 

Backpropagation adding the best momentum to the 6-6-

1 architecture, which has an MSE at the time of testing 

of 0.3020 in sono cattle, 0.0435 in race cattle, 0.3725 in 

Breeder cattle, and 0.0041 in the combination. 

From the trials carried out during training, it is 

found that Backpropagation momentum is faster when 

compared to Backpropagation without momentum with 

a time ratio of 507 s. Backpropagation momentum can 

accelerate convergence to the target error. 
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