

Random Search Hyperparameter Optimization for BPNN to
Forecasting Cattle Population

Bain Khusnul Khotimah1*, Fitri Agustina2, Oktavia Rahayu Puspitarini3, Husni1, Devie Rosa Anamisa1,

Natasha Prayugo1 and Aisyah Meta Sari Putri1

1Department of Informatics Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Bangkalan, Indonesia
2Department of Industrial Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Bangkalan, Indonesia
3Departmen of Animal Husbandry, Faculty of Animal Husbandry, Universitas Islam Malang, Malang, Indonesia

Abstract. Backpropagation Neural Network (BPNN) is a suitable method for predicting the future. It has

weaknesses, namely poor convergence speed and instability, requiring parameter tuning to overcome speed

problems, and having a high bias. This research uses the Random Search hyperparameter technique to

optimize BPNN to automatically select the number of hidden layers, learning rate, and momentum. The

added accuracy of momentum will speed up the training process, produce predictions with better accuracy,

and determine the best architectural model from a series of faster training processes with low bias. This

research will predict the local Indonesian cattle population, which is widely developed by people in the

eastern part, especially Madura, in 4 types of cattle: sono cattle, karapan cattle, mixed cattle, and breeder

cattle. The results of BPNN hyperparameter measurements with the best model show that hyperparameter

optimization did not experience overfitting and experienced an increase in accuracy of 2.5% compared to

the Neural Network model without hyperparameter optimization. Based on the test results, the BPNN

algorithm parameters with a data ratio of 70:30, the best architecture for backpropagation momentum is 6-

6-1, with a learning rate of 0.002, momentum 0.3, which has an MSE during testing of 0.1176 on Karapan

type Madurese cattle. Tests based on computing time measurements show that the BPNN hyperparameter

algorithm stops at 490 iterations compared to regular BPNN. The research results show that the hidden

layers, learning rate, and momentum if optimized simultaneously, have a significant influence in preventing

overfitting, increasing accuracy, and having better execution times than without optimization.

Keywords: Hyperparameters, BPNN, Random Search, Prediction, Population Number, Madurese Cattle .

1 Introduction

Madurese cattle are one of Indonesia's local cattle

breeds. This cow has several characteristics, such as a

light brown to dark brown body color, black hooves,

snout, fine hair around the mouth, and relatively long

legs. Apart from that, it is more resistant to the hot

climate in the Madura area, is susceptible to parasite

attacks, and has good meat quality [1]. As local

Indonesian cattle, Madurese cattle are one of Indonesia's

genetic resources [2]. The Madurese people select

Madurese cattle into four types based on their culture:

karapan cattle, local cattle, sonok cattle, and broiler

cattle. Karapan cattle are bulls that can run fast, are

agile, have hard-working skeletal muscles, and are

emotional. Sonok cattle are female cattle that are docile,

obedient, and beautiful, while cattle and beef cattle are

slaughtered for their meat and sold to consumers.

Madura cattle have several advantages, namely high

adaptability to heat and disease resistance, utilizing low-

quality feed, having better reproductive performance

* Corresponding author: bain@trunojoyo.ac.id

compared to cross-breed cattle, and consumers much

prefer their meat [3]. So, the government's role is

significant for the regions to continue to implement and

improve outreach programs coaching for farmers

regarding issues of feed technology for ruminant

livestock and beef cattle trade systems to accelerate

economic development, especially in Madurese cattle

farming. The development of the cattle population is

used as a supporting role in improving the quality of

human resources as a provider of nutritious food sources

to create a healthy and productive society, as envisioned

by the vision and mission of livestock development [4].

Machine learning methods are the most common

methods for predicting things. The machine learning

method uses forecasting data samples and looks at the

data movement patterns of the development of the time

series data using an algorithm that can learn ways.

Machine learning has various types of methods, for

example, intelligent systems and artificial neural

networks (ANN) [5]. Backpropagation modeling falls

into the Multilayer perceptron category. The

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

mailto:bain@trunojoyo.ac.id

development of the backpropagation algorithm is by

adding momentum. Momentum in a neural network is a

weight change based on the gradient direction of the last

and previous patterns. Adding momentum parameters to

the three artificial neural networks aims to speed up the

learning process towards convergence [6]. Experimental

results have also shown that this method can make the

network converge quickly and stably. This situation is

caused because momentum allows the network to adjust

weights drastically if the results are changed in the same

direction in several patterns, so training becomes faster

[7].

Population forecasting using artificial neural

network (ANN) models compared to traditional cohort

component methods (CCM) for regions in Alabama,

USA., which has diverse population and socio-

economic characteristics. ANN has produced errors

with the right level of precision for regional mapping

recommendations [8]. This research is about forecasting

population growth using a comparison of artificial

neural networks and regression techniques, this shows

that artificial neural networks are a good tool for

predicting growth models [9].

Neural Network research has also been carried out

by [10], where this research carried out parameter

optimization in Neural Networks using Genetic

Algorithms. This research shows that the combination

of Neural Network-Genetic Algorithms is better than

just using Neural Networks alone. The hyperparameter

configuration that produces the best performance is

known as hyperparameter optimization. Tuning

hyperparameters can affect the classification algorithm's

performance, making this step important [11]. Over the

last few years, various algorithms have been developed

to optimize hyperparameter values, including Random

Search, Grid Search, and model-based approaches using

Random Forest, and sequential model-based

optimization [12]. Sequential model-based optimization

is the best strategy for optimizing hyperparameters

because it involves a probabilistic model of the data to

determine the most promising points to evaluate. One of

the sequential model-based optimization algorithms is

Bayesian Optimization [13]. Research related to

hyperparameter optimization using Bayesian

Optimization was carried out on the Gradient Boosted

Trees algorithm by [14]. This research showed that

hyperparameter optimization using Random Search for

machine learning models experienced an increase in

accuracy compared to not using hyperparameter

optimization. According to [15-16], some factors

influence the performance of the Backpropagation

algorithm, namely hidden layers, learning rate, and

momentum, where these factors are hyperparameters in

the neural network. Because these hyperparameters are

an essential factor in backpropagation algorithm

training, in building a classification model for Neural

Networks in this research, these hyperparameters were

optimized [17-18].

Hyperparameters with tuning techniques using the

random search method have the advantage of this

method being a straightforward approach [16].

However, this can be a drawback because experimenting

with all combinations will take time when handling

large-dimensional data. It would be very suitable to use

this algorithm for data that develops population numbers

over several years and does not have large dimensions.

It is hoped that applying this method can reduce the

model's error value on manageable data [19-20].

This research predicts the population of Madurese

cattle using BPNN with the addition of momentum and

hyperparameter tuning. To determine the level of

accuracy of the artificial neural network system that has

been created in predicting the number of developments

of Madurese cattle in a specific year. In the first scenario

of this research, different error targets will produce other

numbers of iterations. The smaller the target error, the

greater the number of iterations. Second, the smaller the

target error, the accuracy value tends to be better

(larger). Third, the number of iterations in the training

process with added momentum is more diminutive than

without. Based on previous research, the research has

predicted the development of the Madurese cattle

population using the backpropagation method with the

addition of momentum. It is hoped that the prediction

results will prepare for food security and prevent the

extinction of Madurese cattle.

2 Methods

2.1 Algoritma momentum backpropagation

A neural Network (NN) is a network of a group of small

processing units modeled based on human neural

networks. NN is an adaptive system that can change its

structure to solve problems based on external and

internal information flowing through the web. In simple

terms, NN is a non-linear statistical data modeling tool.

NN can be used to model complex relationships between

input and output to find patterns in data [11][21]. BPNN

is a method developed by adding hidden for the

backward process in NN. The Momentum

Backpropagation algorithm has steps similar to the

conventional one, but the difference lies in the reversal

stage (backward propagation) [22-24]. The Momentum

Backpropagation algorithm is an extension of the

traditional Backpropagation algorithm, where in the

learning process, it utilizes the concept of momentum,

with a momentum constant value in the range from 0 to

1, to reduce conventional BPNN iterations [8]. BPNN

steps are divided into two stages, namely, feedforward

and backward propagation [25].

 The feedforward step used for the initial direction

produces the following initial output:

1. Start by setting an initial weight from 0 to 1.

2. Determine the maximum values for Epoch, Learning

rate (α), Momentum, and Target Error.

3. Next, repeat steps 4 to 8 during the (Epoch <

maximum epoch) or (MSE > Target Error)

condition.

4. Execute steps 6 through 10 during the training

process.

5. For the testing process, perform steps 6 to 7.

 Forward Propagation (feedforward)

2

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

6. Addition of weights in the hidden layer.

𝒛−𝒊𝒏(𝒋) = 𝒗𝟎𝒋 + ∑ 𝒙𝒊

𝒏

𝒊=𝟏
. 𝒗𝒊𝒋

(1)

With:

𝒛−𝒊𝒏(𝒋) = Total input signal at unit layer j

𝒗𝟎𝒋 = Input bias weights of unit 0 and unit layer j

𝒙𝒊 = Input value in unit i

𝒗𝒊𝒋 = The weight between input unit i and layer unit

j

7. Perform activation operations with weighted

addition with the sigmoid activation function.

𝒛𝒋 =
𝟏

𝟏 + 𝒆−𝒛_𝒊𝒏(𝒋)

(2)

With:

𝒛𝒋 = Output at unit layer j

𝒛𝒊𝒏(𝒋) = Total input signal at unit layer j

8. Calculates the output layer value

𝒚_𝒊𝒏𝒌(𝒌) = 𝒘𝟎𝒌 + ∑ 𝒛𝒋

𝒏

𝒋=𝟏

. 𝒘𝒋𝒌

(3)

With:

𝑦_𝑖𝑛𝑘(𝑘)= Total input signal at the output of k units

𝑤0𝑘 = Input bias weights unit 0 and unit layer k

𝑧𝑗 = Input value at unit layer j

𝑤𝑗𝑘 = The weight between unit j's layer and unit k

as output

9. Calculating the output signal with the activation

function.

𝒚𝒌 =
𝟏

𝟏 + 𝒆−𝒚_𝒊𝒏(𝒌)

(4)

With:

𝑦𝑘= Output at unit layer k

𝑦_𝑖𝑛(𝑘)= Total input signal at the output of k units

Backward propagation

1. Calculates the error value based on the error value

and the target value.

𝜹𝒌 = (𝒕𝒌 − 𝒚𝒌) (5)

With:

𝛿𝑘 = error factor in the output of unit k

𝑦𝑘 = Output at unit layer k

𝑡𝑘 = Target

2. Calculate the weight correction value 𝑤𝑗𝑘:

∆𝒘𝒋𝒌(𝒕) = 𝜶𝜹𝒌𝒛𝒋 + ∆𝒘𝒋𝒌(𝒕 − 𝟏)𝝁 (6)

 With:

∆𝑤𝑗𝑘(𝑡)= Correct the weight of unit j and output k

in iteration t

𝛼 = Learning rate

𝛿𝑘= error factor in the output of unit k

𝑧𝑗 = Output at unit layer j

∆𝑤𝑗𝑘(𝑡 − 1)= Correction of weights in the previous

iteration

𝜇 = Momentum

3. Calculate the bias correction value 𝑤0𝑘:

∆𝒘𝟎𝒌(𝒕) = 𝜶𝜹𝒌 + ∆𝒘𝟎𝒌(𝒕 − 𝟏)𝝁 (7)

With:

∆𝑤0𝑘(𝑡) = Correction of unit bias weight 0 and

output k at iteration t

𝛼 = Learning rate

𝛿𝑘= error factor in the output of unit k

𝑧𝑗= Output at unit layer j

∆𝑤0𝑘(𝑡 − 1)= Bias correction in the previous

iteration

𝜇 = Momentum

4. Addition of unit deltas for each hidden layer neuron

𝜹𝒊𝒏 𝒋 = ∑ 𝜹𝒌

𝒎

𝒌=𝟏
𝒘𝒋𝒌

(8)

With:

𝛿𝑖𝑛 𝑗= The total sum of weighted unit delta

𝛿𝑘 = Error factor in the output of unit k

 𝑤𝑗𝑘 = The weight between unit j's layer and unit k's

output

5. Calculating the error value:

𝜹𝒋 = 𝜹𝒊𝒏 𝒋(𝒛𝒋)(𝟏 − 𝒛𝒋) (9)

With:

𝛿𝑗 = Error value in unit layer j

𝛿𝑖𝑛 𝑗 = Error factor in the output of unit k

𝑧𝑗 = Output at unit layer j

6. Calculate the weight correction value 𝑣𝑖𝑗:

∆𝒗𝒊𝒋(𝒕) = 𝜶𝜹𝒋𝒙𝒊 + ∆𝒗𝒊𝒋(𝒕 − 𝟏)𝝁 (10)

With:

∆𝑣𝑖𝑗(𝑡) = Correct the weight of unit i and output j in

iteration t

𝛼 = Learning rate

𝛿𝑗 = Error value in unit layer j

𝑥𝑖 = Input value in unit i

∆𝑣𝑖𝑗(𝑡 − 1) = Correction of weights in the previous

iteration

𝜇 = Momentum

3

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

7. Calculate the bias weight correction value 𝑣0𝑗:

∆𝒗𝟎𝒋(𝒕) = 𝜶𝜹𝒋 + ∆𝒗𝟎𝒋(𝒕 − 𝟏)𝝁 (11)

With:

∆𝑣𝑜𝑗(𝑡) = Correction of unit bias weight 0 and

output j at iteration t

𝛼 = Learning rate

𝛿𝑗 = Error value in unit layer j

∆𝑣0𝑗(𝑡 − 1) = Correction of bias weights in

previous iterations

𝜇 = Momentum

8. Improvement of weight values and bias values in

the output layer.

𝒘𝒋𝒌(𝒏𝒆𝒘) = 𝒘𝒋𝒌(𝒐𝒍𝒅) + ∆𝒘𝒋𝒌 (12)

𝒘𝟎𝒌(𝒏𝒆𝒘) = 𝒘𝟎𝒌(𝒐𝒍𝒅) + ∆𝒘𝟎𝒌 (13)

With:

𝑤𝑗𝑘(𝑛𝑒𝑤) = Weight between unit j layer and unit k

output (new)

𝑤𝑗𝑘(𝑜𝑙𝑑)= Weight between unit j layer and unit k

output (old)

∆𝑤𝑗𝑘= Correct the weight of unit j and output k in

iteration t

𝑤0𝑘(𝑛𝑒𝑤) = Input bias weights unit 0 and unit layer

k (new)

𝑤0𝑘(𝑜𝑙𝑑) = Unit input bias weight 0 and unit layer

k (old)

∆𝑤0𝑘 = Correction of unit bias weight 0 and output

k at iteration t

9. Improved weight values and bias values in the

hidden layer.

𝒗𝒊𝒋(𝒏𝒆𝒘) = 𝒗𝒊𝒋(𝒐𝒍𝒅) + ∆𝒗𝒊𝒋 (14)

𝒗𝟎𝒋(𝒏𝒆𝒘) = 𝒗𝟎𝒋(𝒐𝒍𝒅) + ∆𝒗𝟎𝒋 (15)

With:

𝑣𝑖𝑗(𝑛𝑒𝑤) = Weight between input unit i and layer

unit j (new)

𝑣𝑖𝑗(𝑜𝑙𝑑)= Weight between input unit i and layer

unit j (old)

∆𝑣𝑖𝑗= Correct the weight of unit i and output j in

iteration t

𝑣0𝑗(𝑛𝑒𝑤) = Unit input bias weight 0 and output j

(new)

𝑣0𝑗(𝑜𝑙𝑑) = Unit bias weight 0 and output j (old)

∆𝑣0𝑗 = Correction of unit bias weight 0 and output

j

2.2 Random Search

Random Search (RS) is very suitable in high dimensions

because the desired function has a low practical

dimension and is more sensitive to changes in some

dimensions than others [26]. In particular, if a function

f of two variables can be approximated by another

function of one variable (f(x1, x2) ≈g(x1)), it can be said

that f has a low practical dimension [27]. Figure 1

illustrates how grid points and uniform collections of

random points differ in dealing with standard adequate

dimensions.

Figure 1. Illustration random search of n parametaers for

optimizing [28].

Fig. 1. Show for using random search of n

experiments to optimize the function f(x, y) = g(x) +

h(y) ≈ g(x) with low adequate dimensions [29]. Above

each grid, g(x) is shown in green, and on the left of each

box, h(y) as the objective function and n as trials test

g(x) in different places. With random search,

experiments continuously explore different values grid

until the appropriate parameter values are obtained [30-

31]. The parameters used for tuning parameters in

BPNN are shown in Table 1.

Table 1. The random search algorithm.

Parameter Algorithm BPNN

Number of hidden layers 3,6,8,10,12,24

Number of Nodes 3,6,8,10,12

Learning Rate 0.001-0.1

Momentum 0.001-0.1

2.3 Data Preprocessing

Data preprocessing is carried out by imputation and

normalization to produce data ready as classification

input. This process is carried out to eliminate missing

values with a value obtained from the dataset. Data

Interpolation is an action that occurs in the pre-

processing stage. This stage fills in empty data by using

the average value of the data before and after the open

data [8].

𝒙𝒏 =
𝒙𝒏−𝟏 + 𝒙𝒏+𝟏

𝟐
 (16)

 So, normalization is done for transformation

process stabilizes the data by changing the data into a

scale form with a value range from 0 to 1, often called

scalar min-max. In the normalization flow, it is carried

out after imputation of data to overcome missing values,

so that complete data is obtained [10].

𝒙′ =
𝒙 − 𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏

 (17)

The normalization process uses the actual data minus the

most minor data divided by the highest data minus the

4

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

most minor data to produce data ranging from 0 – 1

[9][10].

3 Result and Discussion

3.1 Hyperparameter and architecture for BPNN
performance

In this section, we apply GS hyperparameters to

investigate the performance of BPNN by measuring the

performance of MSE to assess the effectiveness of all

models for forecasting local cattle populations spread

across Indonesia's eastern part of the island of Madura.

Hyper-parameters with GS by selecting the best

parameter, according to Fig. 2. to determine how

significant, the variation in prediction results.

Start

Parameter

Learning Rate,

Momentum, hidden

layer, node

Determine upper

and lower limits

Combination of

parameter and

architecture values

For

Hyperparameter

End

Calculated MSEMSE<=0.01

The Best

Model

BPNN

Random selection of

parameters within

certain range limits

Finish

No Yes

No

Yes

Fig. 2. Proposed method for RS hyperparameters in BPNN

Table 2. The effect of learning rate and momentum on MSE

in the 4-7-1 architecture.

Learni

ng rate

Moment

um

MSE

Sono

cattl

e

Kerap

an

cattle

Breed

er

cattle

Beef

cattl

e

0.2 0.6
0.18

16
0.1754 0.1913

0.21

10

0.02 0.6
0.19

09
0.1766 0.1951

0.18

39

0.002 0.6
0.12

15
0.1285 0.1491

0.15

27

0.2 0.3
0.17

27
0.1763 0.1843

0.19

23

0.02 0.3
0.17

61
0.1711 0.1842

0.18

36

0.002 0.3
0.13

35
0.1392 0.1253

0.14

03

0.2 0.9
0.17

88
0.1784 0.1893

0.19

12

0.02 0.9
0.21

23
0.1777 0.2268

0.18

67

0.002 0.9
0.16

53
0.1707 0.1902

0.18

07

RS approach to find the best hyperparameter values

with respect to a given value. The Backpropagation

Momentum process is carried out at the training stage

with a data division of 70%:30% of 1,000 data. The

existing data was checked for missing values, and the

imputation process was carried out. After obtaining

complete data, proceed with min–max normalization so

that the data is in the range of 0 to 1. The training stages

use the Backpropagation momentum algorithm with the

first stage, namely initializing the weight, max epoch,

learning rate, and target error, carried out randomly.

When the epochs are less than the maximum epoch or

the MSE is greater than the target error, it will go to the

next stage, but if not, it will immediately produce model

output. When the number of iterations is less than the

number of datasets, it will proceed to the next stage,

namely FeedForward, from the input layer to the hidden

layer to the output layer. If the max epoch is 1000, while

epoch < max epoch or MSE > target error, at the

FeedForward stage from input to the hidden layer to

output, adding up the weight values in the hidden layer.

For the sigmoid activation function, the results will be

obtained from the output signal from the hidden neuron

unit. At each layer, the output will add up the signals

from the layer in the hidden unit with weights and

biases. The sigmoid activation function is performed to

calculate the output signal from the unit at the output.

Next, calculate the error value.

Table 3. The Effect of learning rate and momentum on MSE

in the 6-6-1 architecture.

Learni

ng rate

Moment

um

MSE

Sono

cattl

e

Kerap

an

cattle

Breed

er

cattle

Beef

cattl

e

0.2 0.6
0.17

81
0.1792 0.1877

0.17

91

0.02 0.6
0.17

81
0.1719 0.1975

0.18

55

0.002 0.6
0.11

76
0.1454 0.1511

0.15

73

0.2 0.3
0.17

32
0.1817 0.1781

0.19

45

0.02 0.3
0.16

29
0.1726 0.1719

0.18

51

0.002 0.3
0.12

98
0.1413 0.1212

0.14

47

0.2 0.9
0.15

86
0.1804 0.1669

0.19

56

0.02 0.9
0.20

85
0.1779 0.2190

0.19

22

0.002 0.9
0.17

14
0.1620 0.1741

0.17

89

The first experiment was carried out on the 4-7-1

architecture with different combinations of learning rate

(0.2, 0.02, 0.002) and momentum (0.6, 0.3, 0.9). In the

experiment conducted on Sono cattle data, the best

performance was in the model with learning rate = 0.002

and momentum = 0.6 and the model with learning rate

= 0.002 with momentum = 0.3. Both models have the

same performance in MSE = 0.09039. In kerapan cattle,

the best performance lies in the model with a learning

rate = 0.002 and momentum = 0.3. The model has a

performance of MSE = 0.09104. The best broiler

performance lies in the model with a learning rate =

0.002 with a momentum of 0.3. The model has a

performance of MSE = 0.09421. In beef cattle, the best

5

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

performance lies in the model with learning rate = 0.002

and momentum = 0.3. The model has a performance of

MSE = 0.08875. From the trials carried out on four data,

the best model for testing on the 4-7-1 architecture is the

model with a learning rate = 0.002 and momentum = 0.3.

Table 4. The Effect of learning rate and momentum on MSE

in the 8-13-1 architecture.

Learni

ng rate

Moment

um

MSE

Sono

cattl

e

Kerap

an

cattle

Breed

er

cattle

Beef

cattl

e

0.2 0.6
0.18

84
0.1721 0.1963

0.23

65

0.02 0.6
0.18

60
0.1700 0.1952

0.18

53

0.002 0.6
0.12

88
0.1383 0.1337

0.15

61

0.2 0.3
0.17

78
0.1730 0.1897

0.19

95

0.02 0.3
0.17

80
0.1617 0.1844

0.17

38

0.002 0.3
0.11

83
0.1261 0.1363

0.14

72

0.2 0.9
0.19

91
0.1694 0.2069

0.28

98

0.02 0.9
0.19

98
0.1677 0.2073

0.18

80

0.002 0.9
0.18

24
0.1749 0.2016

0.17

81

The second experiment was carried out on the 6-6-1

architecture with different combinations of learning rate

(0.2, 0.02, 0.002) and momentum (0.6, 0.3, 0.9). The

model has a performance of MSE = 0.1176 far sono

cattle, the best performance lies in the model with

learning rate = 0.002 and momentum = 0.6. The higher

the momentum, the lower the MSE results. Momentum

will make the backward weighting iterations increase

but in general it can increase the performance of the

algorithm.

The architecture BPNN on the 8-13-1 with different

combinations of learning rate (0.2, 0.02, 0.002) and

momentum (0.6, 0.3, 0.9). In experiments carried out,

the best performance lies in the model with learning rate

= 0.002 and momentum = 0.6. The model has a

performance MSE = 0.1288 for sono cattle.

3.2 Analysis

This research has carried out non-momentum BPNN

training and additional Momentum BPNN using three

architectures, four learning rates, and three momentums

on data on different types of livestock. It aims to analyze

and observe performance architectures that consistently

produce better-performing models. Apart from that, this

research varies the learning rate, non-momentum, and

momentum of each architecture to keep the effect of

execution time on the best model. At this training stage,

the author carried out 1,000 epochs on each of the best

architectural models to determine BPNN performance.

Hyperparameters with Random search are used to

choose the most suitable architecture and calculate the

execution time.

Fig. 3. Best execution time of BPNN in momentum with

architecture 4-7-1.

Fig. 4. Best execution time of BPNN in momentum with

architecture (6-6-1).

Fig. 5. Longest execution time of BPNN with architecture

BPNN in momentum (8-13-1)

Backpropagation in momentum is tied to the

previous iteration to calculate weight changes involving

velocity. The testing with execution time on 6-6-1

architecture with momentum = 0.002 for 600 seconds.

What affects this is that the model needs help to find

patterns from various datasets, so other architectures

also take a long time. The more hidden layers, the longer

the execution time, and the backward phase does this in

that it updates the weights without tying up the

constructs from the previous iteration. The MSE

obtained is slightly more significant than the

Backpropagation momentum. The drilled model has

difficulty reaching the minimum value, which causes the

acceleration of convergence to be slow. When

comparing training times Backpropagation momentum

is longest when execution occurs on the 8-13-1

0

200

400

600

800

1000

Sono

cattle

Kerapan

cattle

Breeder

cattle

Beef cattle

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

0

200

400

600

800

1000

Sono

cattle

Kerapan

cattle

Breeder

cattle

Beef cattle

E
x
e
c
u

ti
o

n
 T

im
e
 (

s)

0

200

400

600

800

1000

Sono
cattle

Kerapan
cattle

Breeder
cattle

Beef cattle

E
x
e
c
u

ti
o

n
 T

im
e
 (

s)

6

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

architecture, when learning rate = 0.2. because more

complex architectures require more iterations.

The comparison of non-momentum BPNN training

time for the best 4-7-1 architecture, with the effect of

changing learning rate on training runtime. When the

learning rate = 0.2, it has the fastest time, namely 469 s

for Beef Cattle, whereas if the learning rate = 0.002, it

has the longest time, namely 900 s for Breeder Cattle.

The average time for all executions is 716s, meaning

that BPNN has an uncertain time to get the optimum

value, so its convergence is slower. The time will

increase slightly faster. For example, the learning rate is

reduced to 0.002, so the computational model is faster,

and the computation takes longer.

Table 5. Execution time is based on learning rate BPNN in

momentum.

Data

Execution time is based on

Learning Rate (s)

0.002 0.02 0.2

Sono

cattle
560 845 692

Kerapan

cattle
634 617 507

Breeder

cattle
900 625 730

Beef

cattle
880 752 680

Furthermore, testing based on execution time in

Backpropagation adds momentum. The higher the

momentum value produces longer iterations because of

the role of momentum in calculating weight updates.

Apart from that, saving the previous correction weights

in the weight update settings is one of the causes of the

extended computing time in each iteration. Selection of

the best time-based architecture, namely 6-6-1, produces

good time-based testing with added momentum,

according to Table 5.

Adding momentum is part of deep learning in BPNN

to produce low bias. The formation of the best model in

this research uses several variations on hidden neurons,

activation functions, and automatic selection of

parameters with random search. Random search chooses

gradient descent with the best momentum and adaptive

learning rate d at 0.2 for BPNN l, and the activation

function used is sigmoid.

4 Conclusion

Hyperparameter Backpropagation Neural Network

(BPNN) using random search to optimize the model

architecture, learning rate, and momentum, with testing

conducted epoch of 1,000. Tuning parameters based on

learning rate and momentum on the performance of

BPNN in momentum is in the range of learning rate 0.2,

0.02, 0.002 has produced the best learning performance

in this model is 0.002. The best momentum parameter

tuning with values of 0.3, 0.6, and 0.9 makes the best

MSE value at the lowest momentum of 0.3.

The effect of the best architecture model on

Backpropagation adding the best momentum to the 6-6-

1 architecture, which has an MSE at the time of testing

of 0.3020 in sono cattle, 0.0435 in race cattle, 0.3725 in

Breeder cattle, and 0.0041 in the combination.

From the trials carried out during training, it is

found that Backpropagation momentum is faster when

compared to Backpropagation without momentum with

a time ratio of 507 s. Backpropagation momentum can

accelerate convergence to the target error.

The authors thank LPPM Trunojoyo University for facilitating

and funding this research with the National Collaborative

Research scheme with the main contract number

5869/UN46.4.1/PT.01.03/2023. The author would also like to

thank the Faculty of Animal Husbandry of the Islamic

University of Malang for collaborating with the Team by

assisting with validation and data analysis in conducting the

research until completion.

References

1. R. Benzer, Population dynamics forecasting using

artificial neural networks, January 2015, Fresenius

environmental bulletin, 24, 2 (2015).

2. V. Riiman, A. Wilson, P. Pirkelbauer, Comparing

Artificial Neural Network and Cohort-Component

Models for Population Forecasts, Published in

Population, Economics, Review, 22 October 2019

3. N Widyas, T. S. M. Widi, E. Baliarti, Predicting

Madura cattle growth curve using non-linear model,

IOP Conf. Ser.: Earth Environ. Sci. 142, 012006,

(2018).

4. U. Paputungan, M. J. Hendrik, W. Utiah, Predicting

live weight of Indonesian Local-Bali cattle using

body volume formula, Livestock Research for

Rural Development. Volume 30, 2018.

5. P. Alkhairi, E. R. Batubara, R. Rosnelly, W.

Wanayaumini, and H. S. Tambunan, Effect of

Gradien Descent With Momentum

Backpropagation Training Function in Detecting

Alphabet Letters, Sinkron : Jurnal Penelitian

Teknik Informatika, 8, 574–583 (2023).

6. T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama,

Optuna, A next-generation hyperparameter

optimization framework, in Proceedings of the 25rd

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (2019).

7. F. R. Ramadani, Inggih Permana, M. Afdal, and Siti

Monalisa, Model for Estimating Waste Generation

in Pekanbaru Using Backpropagation Algorithm, J.

INFORMATICS Telecommun. Eng., 7, pp. 317–

327, (2023).

8. M. G. M. Abdolrasol et al., Artificial neural

networks based optimization techniques: A review,

Electron, 10, 21 (2021).

https://doi.org/10.3390/electronics10212689

9. K. M. R. Alam, N. Siddique, and H. Adeli, A

dynamic ensemble learning algorithmfor neural

networks, Neural Comput. Appl., 32, 2, pp. 8675–

8690, (2020).

7

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

10. A. Zheng. Chapter 4: Hyperparameter tuning, In:

Evaluating Machine Learning Models. USA:

O’Reilly Media, Inc., (2015).

11. M. Feurer and F. Hutter, Hyperparameter

optimization, pp. 3–33, (2019).

12. Y. A. Du, Research on the Route Pricing

Optimization Model of the Car-Free Carrier

Platform Based on the BP Neural Network

Algorithm, Complexity, (2021)

13. K. Adamczyk, D. Zaborski, W. Grzesiak, J.

Makulska, W. Jagusiak, Recognition of culling

reasons in Polish dairy cows using data mining

methods, Comput, Electron, Agric, 26-27 (2016)

14. Lee, D. H.; Lee, S.-H.; Cho, B.-K.; Wakholi, C.;

Seo, Y. W.; Cho, S.-H.; Kang, T.-H.; Lee, W.-H.

Estimation of carcass weight of Hanwoo (Korean

Native Cattle) as a function of body measurements

using statistical models and a neural network.

Asian-Australas. J. Anim. Sci., 33, (2020)

15. L. Krpálková, V. E. Cabrera, J. Kvapilík, J.

Burdych, P. Crump, Associations between age at

first calving, rearing average daily weight gain,

herd milk yield and dairy herd production,

reproduction, and profitability. J. Dairy Sci., 97

(2014)

16. J. Bergstra, Y. Bengio, Random search for hyper-

parameter optimization. J. Mach. Learn. Res., 13,

pp 281–305 (2012)

17. N Widyas, S Prastowo, T S M Widi and E Baliarti,

Predicting Madura cattle growth curve using non-

linear model, IOP Conf. Series: Earth and

Environmental Science, 142 (2018)

18. J. Choi, D. Kim, M.Ko, D. Lee, K. Wi, H. Lee, Co

mpressive strength prediction of ternary-blended

concrete using deep neural network with tuned

hyperparameters, Journal of Building Engineering

75, 15 September 2023.

19. M. Jin, Q. Liao, S. Patil, A. Abdulraheem, D. Al-

Shehri, G. Glatz, Hyperparameter Tuning of

Artificial Neural Networks for Well Production

Estimation Considering the Uncertainty in

Initialized Parameters, ACS Omega, 7, pp.

24145−24156, (2022)

20. M. Ahuja, D. P. Mishra, D. Mohanty, H.

Agrawal, S. Roy, Development of Empirical and

Artificial Neural Network Model for the Prediction

of Sorption Time to Assess the Potential of CO2

Sequestration in Coal. ACS Omega, 8, 34, pp.

31480-31492, (2023)

21. Z. S. Kadhim, H. S. Abdullah, K. I. Ghathwan,

Artificial Neural Network Hyperparameters

Optimization: A Survey, (iJOE), 18, 15, pp. 59-87,

(2022)

22. S. Bansal and A. Kumar, Automatic Deep Neural

Network Hyper-Parameter Optimization for Maize

Disease Detection, 2021, IOP Conf. Series:

Materials Science and Engineering, 1022, (2021)

012089.

23. L. Yang, A. Shami, On hyperparameter

optimization of machine learning algorithms:

Theory and practice, Neurocomputing, 415, pp 295-

316 (2020)

24. A. Esmaeili, Z. Ghorrati, E. T. Matson, Agent-

Based Collaborative Random Search for

Hyperparameter Tuning and Global Function

Optimization. Systems, 11, 228 (2023)

25. F. F. Firdaus, H. A. Nugroho and I. Soesanti, Deep

Neural Network with Hyperparameter Tuning for

Detection of Heart Disease, 2021 IEEE Asia Pacific

Conference on Wireless and Mobile (APWiMob),

Bandung, Indonesia, pp. 59-65, 2021, doi:

10.1109/APWiMob51111.2021.9435250.

26. I. Jamaleddyn, R. El ayachi, M. Biniz, An improved

approach to Arabic news classification based on

hyperparameter tuning of machine learning

algorithms, Journal of Engineering Research, 11, 2,

(2023)

27. L. Wen, X. Ye, L. Gao, A new automatic machine

learning based hyperparameter optimization for

workpiece quality prediction, Measurement and

Control, 53, 7,), pp.1088–1098, (2020)

28. S. KARMAKAR, G. SHRIVASTAVA, M. K.

Kowar, Impact of learning rate and momentum

factor in the performance of back-propagation

neural network to identify internal dynamics of

chaotic motion, Kuwait Journal of Science (KJS),

41, 2 (2014)

29. K. M. R. Alam, N. Siddique, and H. Adeli, “A

dynamic ensemble learning algorithmfor neural

networks,” Neural Comput. Appl., 32, 12, pp.

8675–8690 (2020).

30. J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,

Algorithms for hyper-parameter optimization, Adv.

Neural Inf. Process. Syst. 24–25th Annu. Conf.

Neural Inf. Process. Syst., NIPS 2011, 1–9, (2011).

31. B. Raharjo, N. Farida, P. Subekti, R. H. S. Siburian,

P. D. H. Ardana, and R. Rahim, Optimization

Forecasting Using Back-Propagation Algorithm, J.

Appl. Eng. Sci., 19, 1083–1089, (2021).

32. G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and

H. Samulowitz, An effective algorithm for

hyperparameter optimization of neural networks,

IBM J. Res. Dev., 61, 4, (2017)

33. P. Liashchynskyi and P. Liashchynskyi, Grid

search, random search, genetic algorithm: A big

comparison for NAS, 2017, pp. 1–11, 2019,

[Online]. Available: http://arxiv.org/

abs/1912.06059.

8

E3S Web of Conferences 499, 01017 (2024) https://doi.org/10.1051/e3sconf/202449901017
1st TMIC 2023

https://www.sciencedirect.com/journal/journal-of-building-engineering
https://www.researchgate.net/journal/International-Journal-of-Online-and-Biomedical-Engineering-iJOE-2626-8493?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

